Лекция 3.

Вопросы лекции:

- 1. Модели параметрического программирования
- 2. Модели стохастического программирования

Вопрос 1. Модели параметрического программирования

Во многих задачах математического программирования исходные данные зависят от некоторого параметра. Такие задачи называются задачами параметрического программирования.

Подробнее

Коэффициенты целевой функции или правые части ограничений или коэффициенты системы ограничений или и те и другие предполагаются не постоянными величинами, а функциями, зависящими от некоторых параметров. Как правило, эта зависимость носит линейный характер.

Параметрическое программирование позволяет приблизить к реальности условия задач линейного программирования. Например, если коэффициенты целевой функции представляют собой цены некоторых продуктов, то можно предположить, что эти цены не постоянны, а являются функциями параметра времени.

С помощью параметрического программирования может быть выполнен анализ устойчивости решений оптимизационных задач. Цель такого анализа состоит в определении интервала значений того или иного параметра, в пределах которого решение остается оптимальным. В общем случае задача параметрического программирования формулируется следующим образом: для каждого значения параметра t из некоторого промежутка его изменения [α , β] требуется найти экстремальное значение функции

$$F = \sum_{j=1}^{n} (c_j' + c_j'' \times t) \rightarrow \max(\min)$$
 (1)

при ограничениях

$$\sum_{j=1}^{n} (a_{ij}' + a_{ij}'' \times t) \times x_{j} = b_{i}' + b_{i}'' \times t; \quad i = \overline{1, m}.$$
 (2)

Здесь зависимость от параметра t носит линейный характер. Решение сформулированной задачи находят методами линейного программирования.

Процесс решения задачи параметрического программирования включает следующие этапы.

- 1. Считая значение параметра t равным некоторому числу $t [\alpha, \beta]$ находят оптимальный план X^* или устанавливают неразрешимость полученной задачи линейного программирования.
- 2. Определяют множество значений параметра t [α,β] для которых найденный оптимальный план является оптимальным или задача неразрешима. Эти значения параметра исключаются из рассмотрения.
- 3. Полагают значение параметра t равным некоторому числу, принадлежащему оставшейся части промежутка $[\alpha,\beta]$ и симплексным методом находят решение задачи линейного программирования.
- 4. Определяют множество значений параметра t, для которых новый оптимальный план остается оптимальным или задача неразрешима.
- 5. Вычисления повторяют до тех пор, пока не будут исследованы все значения параметра $t [\alpha, \beta]$.

Подробнее

Пример. Предприятие для изготовления изделий A,B,C использует 3 вида сырья. Нормы расхода сырья каждого вида на производство единицы продукции каждого вида, а также цена изделия каждого вида приведены в таблице 3.15.

Изделие A, B и C могут производиться в любых количествах (т.к. сбыт обеспечен) в пределах выделенных ресурсов сырья.

Необходимо найти план выпуска изделий, реализация которых обеспечит максимум товарной продукции. Одновременно с этим нужно провести анализ устойчивости оптимального плана при условиях возможного изменения цены на изделия каждого вида.

Таблица 1 – Исходные данные

Вид сырья	Нормы затрат сырья за единицу продукции, кг.			Ресурсы
	A	В	C	сырья, кг.
1	18	15	12	360
2	6	4	8	192
3	5	3	3	180
Цена ед. продукции, р.	9	10	16	

ЭММ. Целевая функция:

$$F = 9 \times x_1 + 10 \times x_2 + 16 \times x_3 \rightarrow \text{max}. \tag{3}$$

Ограничения:

$$18 \times x_1 + 15 \times x_2 + 12 \times x_3 \le 360, \tag{4}$$

$$6 \times x_1 + 4 \times x_2 + 8 \times x_3 \le 192,\tag{5}$$

$$5 \times x_2 + 3 \times x_2 + 3 \times x_3 \le 180,$$
 (6)

Найдем решение симплекс-методом.

Оно имеет вид:

$$x_1=0 \text{ um}. \ x_2=8 \text{ um}. \ x_3=20 \text{ um}. \ F=400 \text{ p}.$$

Установим возможные границы изменения цен каждого из изделий, внутри которых найденный оптимальный план не меняется. Предположим, что цена c_1 равна $9+t_1$ р. Требуется найти такие значения параметра t_1 , при которых оптимальный план остается неизменным. Построив симплекстаблицу, можно найти что, оптимальный план остается неизменным при $t_1 \le 5$. Это означает, что предприятию нецелесообразно включать в план выпуск продукции изделий вида A при условии, что цена одного изделия не

превышает 14 р. При этом предполагаем, что остальные исходные данные остаются без изменений.

Аналогично можно показать, что если цена с одного изделия вида. В изменяется в интервале $8 \le c_2 \le 20$, то оптимальный план остается без изменений.

Также можно показать, что если цена 1-го вида изделий вида. С изменяется $8 \le c_3 \le 20$, то оптимальный план остается неизменным.

При этом значение целевой функции, несмотря на неизменный оптимальный план, при различных значениях параметров t_1, t_2, t_3 будет различным.

Вопрос 2. Модели стохастического программирования

Стохастическое программирование - это метод решения задач на оптимум в условиях неопределенности, случайности. В любом случае решение экономических задач - на максимум прибыли или минимум затрат, показатели прибыли или затрат, строго говоря, являются величинами случайными. Предполагая, что эти величины детерминированные (наперед заданные), мы делаем известные допущения.

Подробнее

Определить будущие затраты или прибыль невозможно, поэтому правильнее считать их равными некоторой предполагаемой величине, умноженной на коэффициент, являющийся случайной величиной. В детерминированной постановке этот коэффициент принимают равным единиие.

Пример постановки задачи в детерминированной форме.

Целевая функция:

$$\sum_{j=1}^{n} C_{j} \times X_{j} \to \max(\min), \tag{7}$$

при ограничениях:

$$\sum_{j=1}^{n} C_1 \times X_j \le b_i; \quad i = \overline{1, m}, \tag{8}$$

$$d_{j} \le x_{j} \le D_{j}; \quad j = \overline{1, n}. \tag{9}$$

В качестве исходных данных необходимо задавать значения параметров c_j , a_{ij} , b_i , d_j , D_j , входящих в ЭВМ. В практических расчетах принимают, что эти значения являются детерминированными, т.е. не зависят о случайны факторов.

Однако, на самом деле только параметры d_j и D_j , устанавливающие предельно допустимые значения x_j , по смыслу будут детерминированными, остальные параметры c_i , a_{ij} , b_j - случайные величины. Например, если ресурсом являются машины, то его величина зависит от надежности работы машин, их технического состояния. Аналогичное утверждение относится к c_j и a_{ij} . Таким образом, в общем случае c_j , a_{ij} и b_i являются случайными величинами.

Задачу со случайными параметрами обычно называют задачей стохастического программирования (СТП). С точки зрения полноты описания случайной величины рассмотрим два случая:

- 1. Известны только диапазоны, в которых могут изменяться случайные величины. Такие задачи называют задачами планирования при полной неопределенности.
- 2. Известны законы распределения случайных величин. Такие задачи называют задачами планирования в условиях риска.

При планировании в условиях полной неопределенности считаем, что на основе анализа предшествующих периодов и характера производства удается установить для каждого из случайных параметров диапазоны их возможного изменения:

$$\min C_i \le C_i \le \max C_i, \tag{10}$$

$$\min a_{ij} \le a_{ij} \le \max a \delta_{ij}, \tag{11}$$

$$\min b_i < b_i < \max b_i. \tag{12}$$

Рассчитаем план для 2-х разных случаев. Худшим (пессимистическим) будет такой план, в котором ресурсы, принимаем наименьшими min b_i , а их расход наибольшим - max a_{ij} . Ожидаемая прибыль будет находиться на нижнем пределе min c_j . Подставив эти значения, получим обычную задачу линейного программирования. Если она имеет решение, получим пессимистический план производства min x_j (j=1,n), выполнение которого гарантировано, но этот план дает низкий экономический эффект.

Лучшим (оптимистическим) будет такой план, в котором ресурсы, располагаемые предприятием, принимаем наибольшими тах b_i , прибыль с каждого изделия наибольшая тах c_i .

Решив задачу ЛП при указанных значениях параметров, найдем оптимистический вариант плана, который дает наибольший экономический эффект, но выполнение, которого не гарантировано.

Задача в пессимистической постановке очень часть может оказаться несовместной.

Во втором случае, т.е. когда известны законы распределения случайных величин, задачу СТП можно сформулировать следующим образом:

Если в целевой функции задачи ЛП

$$F = \sum_{j=1}^{n} C_j \times X_j \to \max(\min), \tag{13}$$

где C_j - случайные величины, то обычно принимается максимизация (минимизация) математического ожидания целевой функции:

$$F = M\left[\sum_{j=1}^{n} C_{j} \times X_{j}\right] \rightarrow \max(\min), \tag{14}$$

что можно записать так:

$$F = \sum_{j=1}^{n} \overline{C_j} \times X_j \to \max(\min), \tag{15}$$

где $\overline{C_j}$ - математическое ожидание случайной величины C_j .

Ограничения. В задаче СТП возможны следующие варианты ограничений:

$$P\left[\sum_{j=1}^{n} a_{ij} \times x_{j} \le b_{i}\right] \ge d_{i}, \tag{16}$$

$$P\left[\sum_{i=1}^{n} a_{ij} \times x_{j} \le b_{i}\right] \le d_{i}, \tag{17}$$

$$P\left[\sum_{j=1}^{n} a_{ij} \times x_{j} \ge b_{i}\right] \ge d_{i}, \tag{18}$$

$$P\left[\sum_{i=1}^{n} a_{ij} \times x_{j} \ge b_{i}\right] \le d_{i}, \tag{19}$$

где a_{ij} и b_i - случайные величины,

 d_{i} - заданные уровни вероятности.

Обозначим:

$$Y_{i} = b_{i} - \sum_{j=1}^{n} a_{ij} \times d_{j},$$
 (20)

где $Y_i\,$ - случайная величина.

Обычно принимают, что случайные величины c_j, a_{ij}, b_i, y_i подчиняются нормальному закону распределения с известным математическим ожиданием и дисперсией.

Подставив (20) в неравенства получим:

$$P[y_i \ge 0] \ge d_i, \tag{21}$$

$$P[y_i \ge 0] \le d_i, \tag{22}$$

$$P[y_i \le 0] \ge d_i, \tag{23}$$

$$P[y_i \le 0] \le d_i. \tag{24}$$

Случайная величина y_i при независимых d_i и Q_i будет иметь математическое ожидание и дисперсию:

$$\overline{Y_i} = b_i - \sum_{i=1}^n a_{ij} \times x_i, \qquad (25)$$

$$\delta_{yi}^2 = Q_i^2 + \sum_{j=1}^n \delta_{ij}^2 \times X_j^2,$$
 (26)

где ${Q_i}^2$ - дисперсия случайной величины bi. Для первого варианта ограничения (4.47-4.50) можно записать:

$$\overline{Y_i} \ge t_{di} \times \delta_{yi},$$
 (27)

где $t_{\rm di}$ - коэффициент, учитывающий закон распределения случайной величины, определяемый аналитически или таблично в зависимости от значения вероятности $d_{\rm i}$;

 δy_i - среднеквадратическое отклонение случайной величины y_i .

Подставив в (4.52) значения Y_i и δ_i получим:

$$\overline{b_i} - \sum_{j=1}^n \overline{a_{ij}} \times x_j \ge t_{di} \times \sqrt{\sum_{j=1}^n \delta_{ij}^2 \times x_j^2 + Q_i^2}.$$
 (28)

После преобразований получим:

$$\sum_{i=1}^{n} \overline{a_{ij}} \times x + t_{di} \times \sqrt{\sum_{j=1}^{n} \delta_{ij} \times x_{j}^{2} + Q_{i}^{2}} \le \overline{b_{i}}.$$
 (29)

Если сравнить выражение (4.55) с аналогичным ограничением в детерминированной постановке

$$\sum_{i=1}^{n} Q_{ij} \times x_{j} \le b_{i}, \tag{30}$$

то увидим, что ограничение в стохастической постановке отличается двумя признаками:

- 1. Выполнен переход от детерминированных значений к математическим ожиданиям случайных величин Q_{ij} и b_i .
 - 2. Появился дополнительный член:

$$\xi_{1} = t_{di} \times \sqrt{\sum_{j=1}^{n} \delta_{ij}^{2} \times x_{j}^{2} + Q_{i}^{2}},$$
 (31)

который учитывает все вероятностные характеристики задачи:

- закон распределения с помощью t_{di};
- заданный уровень вероятности d_i , дисперсии случайных величин Q_{ij} , равные ${\delta_{ij}}^2$ и дисперсию случайных величин b_i , равные ${Q_i}^2$. Таким образом, получим

$$\sum_{i=1}^{n} \overline{Q_{ij}} \times x_{j} + \xi_{i} \le \overline{b_{i}}.$$
 (32)

Решение задач стохастического программирования в такой постановке возможно методами сепарабельного программирования, поскольку ограничения задачи не являются линейными функциями.

Поскольку в ограничениях появился положительный дополнительный член $\xi_{\rm I}$, это приведет к тому, что потребуется большая величина ресурса $b_{\rm i}$ по сравнению с детерминированной постановкой.

Вопросы для самопроверки:

- 1. Определите область применения моделей параметрического программирования.
- 2. Покажите алгоритм решения задачи параметрического программирования
- 3. В чем особенность целевой функции и ограничений задачи стохастического программирования?