
1. 2. 3. 1) ().),

.1 - ; - ; - ; - ; - ; -

.**2.** . 1) . 2) . 3) . 4)

. :1)

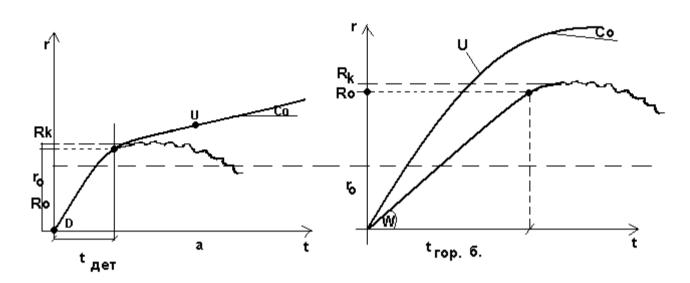
, (,).

$$_{-}\tau$$
 $= min \begin{cases} \frac{B}{2C} \\ H/C \end{cases}$

B- , - , -

3) . ()

4) ()

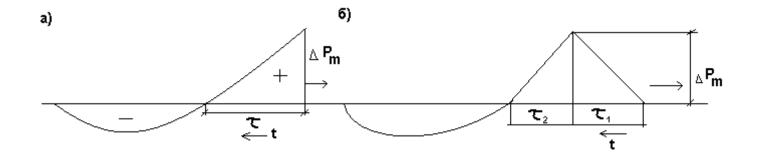

, ().

•

2) . ;

$$M = \frac{D}{C_0} = 3.5 \div 5; \mathbf{D} - , \quad \circ -$$

 C_{θ} , (3).


3. r-t) . \mathbf{R}_0 –

 $, R_0 = \sqrt[3]{\sigma}r_0 \quad . \quad R_0 = \sqrt[3]{\sigma}r_0 \quad$

, $\mathbf{R}_{m{ heta}}=\sqrt{\mathbf{O}}\mathbf{r}_{m{ heta}}$; \mathbf{R}_{-} , \mathbf{W}_{-} , \mathbf{W}_{-} , \mathbf{U}_{-} , $\mathbf{C}_{\mathbf{0}}$, \mathbf{r}_{-} \rightarrow ∞ .

 $\mathbf{r}_0 = \mathbf{R}_0$

; : .4

4.

$$\Delta Pm = \left\{ \left[1 + \frac{3}{2} (\gamma - 1) \frac{\alpha^2}{1 + \alpha} \frac{\sigma - 1}{\sigma} \right]^{\frac{\gamma}{\gamma - 1}} - 1 \right\} \frac{P_0 * R_0}{R}$$

$$W = U * \sigma \left(/ \right) U - \left(/ \right)$$
(1)

 $\alpha = \frac{W}{C_0}; \sigma = \frac{\rho_0}{\rho_I}$

$$\boldsymbol{R}_0 = \boldsymbol{r}_0 (\boldsymbol{\sigma})^{1/3} \quad :; \boldsymbol{r}_0 = \left(\frac{3\boldsymbol{M}_0 \boldsymbol{Z}}{2\pi \boldsymbol{C}}\right)^{1/3} \quad . \tag{2}$$

, $\mathbf{Z} = \mathbf{0.1-0.5}$ (. . .). $\mathbf{Z} = \mathbf{0.02-0.1}$ () . Z = 0.1

 $0.08(/ ^3).$

$$R \le R_0$$
 , $\frac{R_0}{R} = 1$.

$$\alpha = 0.2$$
 $\tau_1 = (1 - \alpha) \frac{R_0}{W} = 2.2 * 10^{-2} r_0$; $\tau_2 = 1.75 * 10^{-3} r_0$.

$$\alpha = 0.3$$
 $\tau_1 = 1.3 * 10^{-2} r_0$; $\tau_2 = 2.2 * 10^{-3} r_0$

$$\alpha = 0.4$$
 $\tau_1 = 8.2 * 10^{-3} r_0$; $\tau_2 = 2.5 * 10^{-3} r_0$

$$\alpha = 0.5$$
 $\tau_1 = 5.5 * 10^{-3} r_0$; $\tau_2 = 2.8 * 10^{-3} r_0$

$$\alpha = 0.6$$
 $\tau_1 = 3.60 * 10^{-3} r_0$; $\tau_2 = 3.0 * 10^{-3} r_0$

$$\alpha = 0.7$$
 $\tau_1 = 2.3 * 10^{-3} r_0$; $\tau_2 = 3.1 * 10^{-3} r_0$.

$$\alpha = 0.8$$
 $\tau_1 = 1.4 * 10^{-3} r_0$; $\tau_2 = 3.25 * 10^{-3} r_0$.

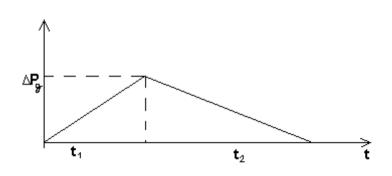
. .=0.5

$$W = \min \left\{ \frac{K * M_0^{1/6}}{100 U \sigma(...*)^{0.312}} \right\}$$
(3)

$$\sigma \approx 6.5 \div 7$$

$$\Delta \overline{P} = 2\Delta \overline{P}_m + \frac{(\gamma + 1)\Delta \overline{P}_m^2}{2\gamma + (\gamma - 1)\Delta \overline{P}_m};$$

$$\gamma = 1,4; \quad \Delta \overline{P} = \frac{\Delta P}{P_0}; \quad \Delta \overline{P}_m = \frac{\Delta P_m}{P_0}$$
(4)


 $, \qquad \qquad \boldsymbol{\tau}_1 = \boldsymbol{\tau}_1 \qquad , \quad \boldsymbol{\tau}_2 = \boldsymbol{\tau}_2$

 \boldsymbol{M}_{o}

.

,

5)

.5 - , ,