Компьютерный практикум №1

Компьютерный анализ узлов опирания строительных конструкций.

В практике выполнения экспериментальных исследований при установлении действительной работы строительных конструкций часто стоит строительных конструкций. залача выявлении условий опирания В способа опирания в значительной степени влияет Установление на фактическую деформативность Учет расчетную И конструкций. податливости узлов и соединений элементов строительных конструкций в теоретической части экспериментального исследования в значительной степени влияет на полученный результат. Выявление способа опирания строительных конструкций экспериментальным смежных путем предварительного предшествует выполнение поверочного расчета. Результаты исследований экспериментальных пространственных использование современных расчетных строительных конструкций И комплексов в значительной степени позволяют корректировать расчетные данные, уточнять поправочные коэффициенты и т.д.

В рамках предстоящих компьютерных практикумов будут рассмотрены типовые задачи, позволяющие использовать расчетные комплексы максимально рационально в при выполнении экспериментальных исследований. Рассмотрим моделирование шарниров и жестких заделок в программном комплексе, основанном на методе конечных элементов.

В данном компьютерном практикуме будет рассмотрена задача в программе «Лира-САПР», в которой будет разобрано сопряжение массива из объемных тел и массива из оболочечных элементов. Примером могут служить кирпичная кладка и опирание на нее монолитной железобетонной плиты.

Создадим новую задачу – Сопряжение объемное оболочка

Описание схемы	×
Признак схемы	
5 - Шесть степеней свободы в узле (X,Y,Z,Ux,Uy,Uz) 💦 🗸 🗸	?
Имя задачи сопряжение объемное оболочка [.]	
Описание задачи (до 255 символов)	^
	~

Создадим первый узел

 № Сординатам № О. Z О. № Разбивать КЭ новыми узлами По координатам Относительно предыдущего узла Относительно базового узла 	Добавить узел	\times
 По координатам Относительно предыдущего узла Относительно базового узла 	ХУZ По координатам Х 0. Y 0. Z 0.	? / /
	 По координатам Относительно предыдущего узла Относительно базового узла 	ıa

Копированием созданного узла создадим еще два узла

Копирование объектов 🛛 🗙				
🗹 В нов	В новый блок			
единь	ым олоком			
Упако	вать совпадаю	щие узлы		
🗹 Копир	овать объедин.	перем.		
🗹 Копир	овать жесткие	тела		
8	1 🚳 👘			
- Копиров	зание по парам	етрам		
d×	0.25	м		
ďY	0	м		
ďZ	0	м		
N	2			
Создавать узлы в местах пересечения с другими КЭ				
		X ?		

Создадим два вспомогательных стержня путём добавления элемента, указанием узлов курсором

Создадим вспомогательные пластины для дальнейшего создания объемного тела. Для этого путем функции - *Перемещение образующей* - создадим 4 пластины в направлении Z из созданных ранее двух стержней. Для этого, в окне – *Перемещение образующей* - указать количество повторении 4 на высоту 1 м.

Создадим из полученных пластин объемное тело, состоящее из объемных элементов. Для этого в окне – *Перемещение образующей*, предварительно выключив галочку «*Создание стержней и пластин*» в направлении dY создадим 9 элементов на длину 2.25м.

z_γ ⊉_x

Удалим вспомогательные элементы стержней. Для этого, во закладке – Фильтр для элементов - поставив галочку в строке - по виду КЭ - выбрать «Стержни». Нажать - Подтвердить. Далее удалить выбранные элементы кнопкой клавиатуры – Delete.

Удалим вспомогательные элементы пластин. Для этого в закладке – Фильтр для элементов - поставив галочку в строке - по виду КЭ - выбрать «Четырехузловые КЭ». Нажать - Подтвердить. Далее удалить выбранные элементы кнопкой клавиатуры –Delete.

Нажать – Упаковка схемы.

Используя функцию копирования элементов скопируем массив из объемных элементов в направлении X на расстояние 2.5м. Таким образом, мы создали геометрию двух параллельных стен.

Создадим оболочечные элементы конструкций перекрытия. Для этого создадим вспомогательные стержневые элементы, встроенные в объемные элементы стены. Для этого с помощью функции – Добавить элемент - создадим стержень через 4 узла внутренней стены (для наглядности выделено стрелочкой).

Zγ ⊉_x

С помощью функции – *Фильтр для элементов* – выделим элементы – *Стержни*. При этом все необходимые элементы окрасятся в красный цвет.

Создадим из выделенных вспомогательных стержней с помощью функции –*Перемещение образующей* - элементы перекрытия. Для этого в окне –*Перемещение образующей* - создадим по 7 элементов в направлении Х на расстояние 2м.

Выделим вспомогательные стержни с помощью функции – *Фильтр для* элементов - и удалим их.

Снова упакуем схему, нажав кнопку –Упаковка схемы.

Выделим с помощью функции – Фильтр элементов – элементы пластин.

Выполним копирование выделенных элементов пластин в направлении dY на расстояние 1.25м.

Снова упакуем схему, нажав кнопку – Упаковка схемы.

Для наглядности в закладке - *Флаги рисования* - можно изменить освещенность, как указано на рисунке.

Переведем вид в проекцию ХОΖ

С помощью «резинового окна» выделим все нижние узлы с помощью функции – *Отметка узлов*. При этом все выделенные узлы окрасятся в красный цвет.

z 1_,x

В меню – Жесткости и связи - Связи в узлах- поставим галочку - «Все». При этом будут выбраны все параметры связи. Таким образом, мы выполнили закрепление стены в уровне обреза фундамента (в качестве примера).

🔳 Связи в узлах 🛛 🗙				
Визуализация связей	Визуализация связей			
Параметры связей				
🗹 Список для фрагмента				

Зададим жесткостные характеристики стен. Для этого в нижней панели нажмем – *Отметка блока* - выберем элементы стен. При этом элементы окрасятся в красный цвет.

В меню – *Жесткости* - зададим характеристики материала кирпичной кладки стен

1. 3D	•			23
	9чет ортотропии			
E	429000	E2 0	E3 0	T/M ²
v	0.25	V21 0	V13 0	
V31	0) V23 0	V32 0	
G12	0	G13 0	G23 0	
y	Учет нелинейности Во 1.8 т/м ³ Параметры материала			T/M3
	Параметры арматуры			
Комментарий				
✓ ?				

Аналогично зададим характеристики материала перекрытий.

11. TJ	пастина Н 20		22
9	Чет ортотропии	E2 0	
E	3.12e+006 T/M ²	V21 0	
V	0.2	G O	
н	20 см	Ro 2.5	T/M3
94	ет нелинейности		
T	ип КЭ () Плита,оболочка	Парамет	гры материала
	🔵 Балка-стенка	Параме	тры арматуры
Учет сдвига Меньший размер пластины 0 м			
Ka	омментарий		Цвет
		?	

Для выяснения, каким образом в данной расчетной схеме выполнено закрепление, в программе достаточно выполнить расчет на действие собственного веса. Для создания загружения от собственного веса необходимо в меню – *Нагрузки* - вызвать закладку – *Добавить собственный вес*. Нажать – *Подтвердить*.

Іобавить собственный вес	23
Собственный вес назначить на:	
💿 все элементы схемы (по типу жесткости)	
🔘 все монтируемые (по типу жесткости)	
Типы жесткостей	
📝 стаңдартные	
🔽 металлические	
📝 пластинчатые, объемные, численные	
🔘 выделенные элементы	
🔲 исключать жесткие вставки стержней	
Коэфф.надежности по нагрузке	
	?

При создании загружения визуально отобразится распределение нагрузки на все элементы в масштабе принятых нагрузок

Сохраним файл и выполним пробный расчет.

В результате выполненного расчета получим схему деформирования, зайдя в закладку – *Анализ*. Как видно из представленного изображения конструкции перекрытия в данном способе соединения перекрытий и стен соединяются шарнирно.

Для наглядного представления жесткого соединения кирпичной стены и перекрытия выполним закрепление одного из участков созданных перекрытий с помощью специальных элементов.

При моделировании стыка вертикальных конструкций (стен и т.д.) с плитами следует учитывать количество степеней свободы в узле элемента. Так объемные КЭ имеют 3 степени свободы в узле (X, Y, Z). Элемент оболочка имеет 5 степеней свободы в узле (X, Y, Z, uX, uY). Т.к. объемный КЭ не имеет степеней свободы на поворот, то опирание плиты будет шарнирным.

Для создания защемления следует воспользоваться фиктивным стержневым КЭ 10 с большой жесткостью на изгиб.

Численное описание для КЭ 10			
EF	1	т	
Ely	1e+006	±*№2	
Elz	1e+006	T [*] M ²	
Gik	1e+006	T*M2	
Y1	0	СМ	
Y2	0	СМ	
Z1	0	СМ	
Z2	0	СМ	
Ru_Y	0	СМ	
Ru_Z	0	СМ	
q	0	т/м	
94er GF GF, GF	y 0 z 0	T	
Комментарий Цвет			

Данный способ моделирования позволит избежать возмущения жесткостей в сравнении с заведением КЭ оболочки в объемный КЭ.

Создадим фиктивные стержневые элементы. Для этого выберем точки опирания одного из участков перекрытия (дальнего) на стену. С помощью функции – *Перемещение образующей* создадим элементы длиной 0,25м, направленных в глубь (внутрь) стены.

По аналогии создадим фиктивные стержни для второй части опирания. Для этого повернем вид для наглядности.

Создав стержни необходимо присвоить им жесткости. Для этого в меню —Жесткости- нажмем кнопку –Добавить. В появившемся окне –Добавить жесткость- выбрать вкладку EF. В данной вкладке необходимо выбрать – КЭ 10 численное. В появившемся окне – Численное описание для КЭ 10 необходимо внести данные, как указано на рисунке. Далее нажать -Подтвердить.

Выполнив повторный расчет, получим следующие отличия в результатах расчета:

Визуально видно влияние защемления в одном из участков плит, что также влияет на числовые значения изгибающих моментов в плитах перекрытия.