Компьютерный практикум №8

Компьютерный анализ работы строительных конструкций при колебаниях

В практике выполнения экспериментальных исследований существуют задачи, связанные с определением динамических нагрузок и напряжений в элементах конструкций. К их числу относят натурные испытания, одной из задач которых является определение исходных данных по динамическим нагрузкам, необходимым для поверочных расчетов долговечности и вероятности безотказной работы элементов строительных конструкций. При проведении таких испытаний для экспериментального определения динамических нагрузок напряжений И В элементах строительных конструкции наибольшее распространение получили способы измерения, основанные на использовании тензорезисторов (тензометрических датчиков омического сопротивления). Установка тензорезисторов на поверхность строительных конструкций предполагается в наиболее нагруженных местах.

Использование современных расчетных комплексов позволяет помогать в оперативном решении похожих задач. Реализацию основ расчета на гармоническое воздействие рассмотрим на примере применения ПК ЛИРА-САПР.

Особенности расчета на гармоническое воздействие

При использовании метода разложения движения по формам собственных колебаний динамические инерционные силы, действующие на систему, представляются в виде синусоидальной и косинусоидальной составляющих S' и S'':

$$S'_{j} = m_{j} \cdot \sum_{i=1}^{k_{f}} \beta'_{i} \cdot \varphi_{ij}; \ S''_{j} = m_{j} \cdot \sum_{i=1}^{k_{f}} \beta''_{i} \cdot \varphi_{ij}.$$

Где

$$\beta'_{i} = \lambda_{i} \cdot \frac{\sum_{j=1}^{n} P_{j} \cdot \varphi_{ij}}{(\lambda_{i}^{2} + \gamma^{2} \cdot r_{i}^{2}) \cdot \sum_{j=1}^{n} m_{j} \cdot \varphi_{ij}^{2}}; \ \beta''_{i} = r_{i} \cdot \gamma \cdot \frac{\sum_{j=1}^{n} P_{j} \cdot \varphi_{ij}}{(\lambda_{i}^{2} + \gamma^{2} \cdot r_{i}^{2}) \cdot \sum_{j=1}^{n} m_{j} \cdot \varphi_{ij}^{2}};$$
$$\lambda = 1 - r_{i}^{2}; \ r_{i} = \theta/\omega_{i}.$$

Где

i=(1, 2, 3...kf) – количество рассматриваемых форм колебаний; j=(1, 2, 3...n) – количество степеней свободы;

m_j – масса, действующая по направлению j-й степени свободы; φ_{ij} – ордината i-й формы по направлению j-й степени свободы; P_j – амплитуда гармонической нагрузки по j-й степени свободы; γ – коэффициент неупругого сопротивления материала; θ – частота изменения гармонической нагрузки;

ω_i – собственная частота колебаний по i-й форме.

При этом амплитудные (максимальные) значения усилий буду равны:

Где N'и N'' – обобщенные усилия от синусоидальной и косинусоидальной составляющих S' и S''.

В ПК ЛИРА-САПР расчет на гармоническую нагрузку, при использовании разложения по формам собственных колебаний, реализован в модулях 24 и 28. Модуль 24 позволяет выполнять расчет на заданную частоту вынужденного воздействия θ (режим установившихся колебаний), а также с учетом прохождения через резонанс (режим остановка/пуск).

В случае учета предшествующих частот расчет выполняется на заданную частоту θ , а также на значения $\theta i=\omega_i$, где ω_i – значения собственных частот колебаний для которых $\omega_i < \theta$. Т.е. частота вынужденного воздействия приравнивается к собственным частотам системы в диапазоне от ω_1 до $\omega_i < \theta$.

Если учитываются предшествующие частоты (наличие опции «Учет частот, предшествующих»), то в результате получаются несколько вариантов S' и S'', последним из которых будет вариант от заданной

частоты. Все эти варианты должны быть взаимоисключающими – они не могут возникать одновременно. Это можно учесть в РСУ, назначив для гармонического загружения взаимоисключение (даже если оно одно), при этом все варианты данного загружения будут взаимоисключающими между собой.

Модуль 28 позволяет выполнять расчет на заданную частоту вынужденного воздействия θ с учетом частотных зон:

При расчете на гармонические нагрузки должна учитываться возможная погрешность в определении собственных частот, связанная с неточностью исходных данных.

Пример 1. Требуется определить динамические силы S' и S'' для консоли с двумя массами (m₁=3m, m₂=m) при установившихся колебаниях системы с резонансной частотой θ=ω₂. Коэффициент неупругого сопротивления γ=0.1.

Теоретическое решение представлено в учебнике А. Ф. Смирнова, А. В. Александрова и др. «Строительная механика. Динамика и устойчивость сооружений». – М.: Стройиздат, 1984.стр. 122-123.

Ниже представлены графические результаты решения.

Принимаем что EI=10000 тс*м², вес массы 1 Q₁=3тс, вес массы 2 Q₂=1тс, амплитуда гармонической нагрузки P₀₁=1тс, $\theta = \omega_2 = 271.25$ рад/с, d=2м.

Создадим расчетную модель в ЛИРА-САПР. Создадим файл с названием – *Гармонические колебания*. Признак схемы выберем – 2 (три степени свободы в узле).

Описание схемы		23
Признак схемы 2 - Три степен	ы и свободы в узле (перемещения XZ,Uy)X 💌	✓?
Имя задачи Г	армонические колебания балки] Результаты расчета в отдельной папке	
Описание задачи (до 255 символов)		*
		Ŧ

Создадим стержень длиной 4м и разобьем его на 20 элементов.

Введем жесткое закрепление стержня в первом узле.

1. КЭ 2 численное	2	×
EF	1e+006	т
Ely	10000	T*M2
Elz	0	T*M2
Gik	0	T*M2
Y1	0	СМ
Y2	0	СМ
Z1	0	СМ
Z2	0	СМ
Ru_Y	0	СМ
Ru_Z	0	СМ
q	0	т/м
- Учет — GF GI GI	Fy O Fz O	T
Комментарий		Цвет
		/ ?

Создадим 1-е загружение. Для этого на расстоянии 2 м от опорного узла приложим статическую силу 3 т. На расстоянии 4м от опорного узла (свободный конец балки) приложим силу 1т. Для этого в окне – Задание нагрузок – введем данные значения усилий в направлении глобальной оси Z для указанных узлов.

3e+003											
											1e+003
•		· · ·							 -		¥

<u>Создадим 2-е загружение</u>. Для этого во вкладке – *Расчет* – нажмем на кнопку – *Учет статических загружений*. В появившемся окне – *Формирование динамических загружений* - необходимо нажать кнопку «+», затем указать номер динамического загружения – 2; номер соответствующего ему статического загружения – 1; коэффициент преобразования – 1. После этого нажать кнопку – *Подтвердить*.

ование	Расширенное ре	едактирование	Расче	т Аналі				
хор я Табл заг	ружений Динамика	∑N →==+ Учет напряжений	Таблица РСУ РСУ	Èo T D Q Qon.				
Форм	ирование динами	ических загруже	ений из	22				
Сфс @ - © -	Сформировать матрицу масс на основании: • загружения (код 1) • плотности элементов (код 2)							
	№ динамического загружения 2 № соответствующего 1 статического загружения Козф. преобразования 1							
Сводна	ая таблица :			= 11				
N²д⊮ 2	ин. з № стат 1	Казфф. 1	Код 1					
	1	"	, , , ,	?				

Далее необходимо создать таблицу динамических загружений. Для этого нажмем на кнопку – Таблица динамических загружений. В появившемся окне необходимо последовательно ввести следующие данные: № строки характеристики – 1; номер загружения – 2; Наименование воздействия – 24 или 28. Количество учитываемых форм колебаний – 2. Нажать на кнопку – Параметры. В появившемся окне – Параметры расчета на гармоническое воздействие – ввести коэффициент 0.1 (для железобетона); вынужденная частота внешнего воздействия – 271.25 рад/сек. В случае гармонического зонального воздействия (28) ввести погрешность в определении частоты – 25.0%. Во всех случаях перед выходом из окон нажимаем – Подтвердить.

3a	адани	е характеристик	с для расч	чета на динами	ческие воздействия		
N строки характеристик 1 📄 🗐 🗐 🖌 N загружения 2							
Наименование воздействия Гармоническое зональное (28) 🗸							
Количество учитываемых 2 форм колебаний 2 N соответствующего ста- тического загружения							
Ma	трица	масс	۲	Диагональная	🔘 Согласованная		
Свод	цная т	аблица для расче	та на дина	амические возд	ействия		
#	Nº.	Имя загруже	Тип	Параметры	Параметры динамического воз		
1	2	Загружение 2	ГАРМ	28 2 0 0 0	0.1 271.250 0.250		
2							
۲.			11		4		

Параметры расчета на гармоническое воздейс										
Казффициент неупругого сопротивления										
К = 0.1 (железобетон) -										
Вынужденная частота внешнего 271.250 воздействия, [рад/сек]										
Погрешность в определении частоты 25.0 %										
✓ 🗶 ?										

Выберем с помощью команды – Отметка узлов – узел балки на расстоянии 2м от опорного узла балки. Далее необходимо в закладке - Создание и редактирование в меню – Создание нагрузок - нажать на кнопку – Гармоническая нагрузка в узле. В появившемся окне необходимо ввести амплитуду воздействия 1000 кг. Нажать – Подтвердить.

Гармоническая нагрузка в узле							
Дополнительная масса в узле 🚺 кг Направление нагрузки 🔿 Х 💿 Ү 💿 Z							
Закон действия нагрузки							
🔘 COS 🛛 💿 SIN							
Амплитуда воздействия 1000 кг							
Сдвиг фазы 0							
✓ 🗶 ?							

В результате создается гармоническое загружение в виде розового кружка в выбранном узле.

Загружение 2 Массы собраны из загружений: 1

Выполняем расчет и переходим к анализу полученных форм и частот колебаний.

Zγ ⊉_,x

Для просмотра численных табличных значений полученных результатов в закладке – *Анализ* - войдем в раздел –*Таблицы* - *Документация* – *Интерактивные таблицы*. В появившемся окне – *Редактор форм* запросим таблицу – *Частоты*. В результате получим результаты полученных расчетов.

Частоты	Частоты собственных колебаний									
			Частоты							
№ загруж	№ формы	Собст.значения	Круг.частота (рад/с)	Частота (Гц)	Период (с)					
2	1	0.017	59.193	9.421	0.106					
2	2	0.004	271.255	43.172	0.023					
2	3	0.001	1067.719	169.933	0.006					
2	4	0.000	2652.438	422.149	0.002					

Далее можем проанализировать результаты по составляющей S1. Посмотреть эпюры поперечных сил Q_{s1} и эпюры моментов M_{s1} .

Загружение 2 Составляющая S1 Этюра Q2 Единицы измерения - т Массы собраны из загружений: 1

Также можно посмотреть числовые значения инерционных сил для выбранных узлов. Для этого отметим узлы 2 и 3. Через закладку *Анализ – Документация - Редактор форм* запросим таблицу – *Инерция*.

Загружение 2 Составляющая \$1 Массы собраны из загружений: 1

Zγ ⊉_,x

13 14

В данной таблице отображены искомые значения динамических нагрузок. В центральном узле 2 данная нагрузка составляет <u>-7.5m</u>; в крайнем правом узле 3 нагрузка составляет <u>2.5m</u>.

Инерци	онные си							
			Инерционные силы					
№ узла	№ загруж	Составл	Х (т)	Ү (т)	Z (T)	UX (т*м)	UY (т*м)	UZ (т*м)
2	2	D1	0.000	0.000	- 7.500	0.000	0.000	0.000
3	2	D1	0.000	0.000	2.500	0.000	0.000	0.000

Результаты расчета и направление действия сил можно визуализировать. Для этого, предварительно выбрав данные два узла, зайдем в закладку – *Расширенный анализ*. Нажмем кнопку – *Рассчитать нагрузку на фрагмент*. Активировать кнопку – *сила по Z*.

Zγ ⊉_x

Таким образом, на примере данного компьютерного практикума и применения расчетного комплекса появилась возможность достаточно быстро анализировать подобные задачи, которые относятся к экспериментальным методам в строительной механике.