Компьютерный практикум №3

Компьютерное моделирование строительных конструкций для анализа их напряженно-деформированного состояния

Выбор способа моделирования напряженно-деформированного состояния строительной конструкции или узлов ее сопряжения часто зависит от возможностей применяемого расчетного комплекса. Например, сопряжение монолитной колонны и плиты пперекрытия в различных программных комплексах позволяет по разному решить поставленную задачу.

При моделировании стыка плита-колонна в безригельном каркасе следует учитывать количество степеней свободы в узле элемента. Так, стержневой КЭ 10 имеет 6 степеней свободы в узле (X, Y, Z, uX, uY, uZ). Элемент оболочка имеет 5 степеней свободы в узле (X, Y, Z, uX, uY).

Кроме того изгибающий момент в стержне вне зависимости от размеров сетки, передается на плиту как момент, сосредоточенный в узле сетки (сосредоточенность момента вытекает из одномерности стержневого элемента). С другой стороны, плита под действием сосредоточенного изгибающего момента получает бесконечный угол поворота в плоскости действия момента в месте его приложения, а точнее, в выражении для угла поворота возникает особенность логарифмического типа. Таким образом, плита не оказывает сопротивления на сосредоточенный поворот, а значит, и не защемляет элементов каркаса.

Таким образом, сгущение сетки КЭ плиты вокруг колонны приводит к снижению изгибающего момента в колонне

Для создания данной задачи создадим новый файл

Описание схемы	x
Признак схемы 5 - Шесть степеней свободы в узле (X,Y,Z,Ux,Uy,Uz) 🔹	✓?
Имя задачи сопряжение плита колонна Результаты расчета в отдельной папке	
Описание задачи (до 255 символов)	*
	Ŧ

Создадим элементы плиты, пользуясь функцией – *Генерация* прямоугольной сети - Генерация плиты.

Создание плоских фрагмен	пов и сетей
	7 277
Генерация плиты	
Угол поворота относите.	льно оси Z 0
Координаты первого узла	Выбор плоскости
	⊚ XOY ◯ XOZ ◯ YOZ
	Указать излы
ZU	
Шаг вдоль первой оси Значение Количество	Шаг вдоль второй оси Значение Количество
1.25 1	1.00 1
1.00 1	1.00 1
💟 Создавать узлы в места	х пересечения с другими КЭ
/	
	/
/	

Создадим колонну из стержневых элементов, проходящих через внутренний узел плиты. Для этого выделим внутренний узел в плите (он окрасится в красный цвет).

Пользуясь функцией – *Перемещение образующей* - создадим два стержня, выходящих вертикально к плите: один вверх, другой – вниз.

И еще один элемент – вниз.

Выполним упаковку схемы.

Создадим закрепление свободных концов колонн.

Создадим жесткости для колонн: сечение колонны 15х15см

Создадим жесткости для перекрытий: толщина перекрытия 30см

Создадим нагрузку от собственного веса и выполним пробный расчет. В закладке – *Анализ – Усилия в стержнях* - посмотрим результаты по Му (эпюры изгибающих моментов по Му).

Выполним копирование полученной схемы 3 раза через 3 м

Выполним корректировку полученных расчетных схем путем разбивки элементов плиты на более мелкие элементы. Начиная со 2-й схемы выполняем корректировку количества элементов, пользуясь закладкой –

Редактирование - Автоматическое объединение - Преобразование сети пластинчатых элементов.

Преобразование сети пластинчатых КЭ		
📝 4-узловые КЭ 📄 3-узловые КЭ		
🔘 На 2 3-узловых КЭ 🛛 🗍 На 3 3-узловых КЭ		
🔘 На 4 3-узловых КЭ 🛛 🔿 На 3 4-узловых КЭ		
💿 На 4 4-узловых КЭ 💿 На 4 3-узловых КЭ	· · · · · · · · · · · · · · · · · · ·	,
🔘 На 2 4-узловых КЭ		
Разбивать прилегающие элементы		
15 * Минимальный угол треугольника	↓ / // //	
√ X ?		
/		

Получаем следующий вид схем. Выполним упаковку схемы.

Выполним расчет. Рассмотрим полученные результаты по изгибающим моментам в колоннах

Рассмотрим полученные результаты по изгибающим моментам в плитах перекрытия

My¹=-0.21кН*м/м; My²=-0.51кН*м/м; My¹=-0.93кН*м/м; My¹=-1.43кН*м/м

Для того, чтобы корректно описать узел сопряжения плиты перекрытия и колонны, следует рассмотреть конструктивное решение в месте примыкания колонны.

Элементы плиты, попадающие в поперечное сечение колонны, могут рассматриваться как абсолютно жесткое тело, не меняющее своих размеров при любых изменениях сетки КЭ плиты.

Этого можно добиться следующим путем:

а) моделирование колонны объемными конечными элементами;
б) моделирование колонны стержнем и введение фиктивных элементов большой жесткости по контуру колонны;

 в) моделирование колонны стержнем с использованием АЖТ (абсолютно жесткого тела) по размеру поперечного сечения колонны.

Создадим новый файл

Описание схемы	×
Признак схемы	
5 - Шесть степеней свободы в узле (X,Y,Z,Ux,Uy,Uz) 🔹 🔻	?
имя задачи сопряжение колонна перекрытие	
Результаты расчета в отдельной папке	
Описание задачи (до 255 символов)	^
	~

а) Создадим 1-ю модель: Колонна из объемных элементов

Создадим через закладку – *Генерация прямоугольной сети* - *Создание плоских фрагментов сетей* - *Генерация плиты* - очертания сечения колонны сечением 30х30см.

Первой создадим колонну из объемных элементов

Для этого, создадим вспомогательные стержни по контуру сечения колонны, используя функцию - *Добавить элемент - Добавить стержень*.

С помощью функции – *Перемещение образующей* - создадим пластины по левой стороне колонны

Аналогично создадим пластины перекрытия с правой стороны колонны

Аналогично по двум остальным сторонам от колонны

Создадим остальные элементы платин перекрытия, используя вкладку – Генерация прямоугольной сети

Выполним упаковку схемы

Создадим колонну из объемных элементов с помощью 2-х шагов

Шаг 1

Шаг 2

Зададим жесткости конструкциям перекрытия

Задан	ие жесткост	ги для пл	астин	-	×
🗖 y	чет ортотрог	ии	E2	0	
E	3e6	T/M^2	V21	0	
V	0.2		G	0	
н	20	см	Ro	2.5	T/M3
Уче	ет нелинейно	ости [
	ип КЭ (Плита,об	олочка	Г	lараметры	ы материала
	🔵 Балка-сте	енка	[Тараметрі	ы арматуры
Меньший размер пластины 0 м					
Ko	мментарий				Цвет
		√	X	?	

Аналогично зададим жесткости объемным элементам колонны

2. 3D					×
	🗌 Учет ор	тотропии			
E	3e+006	E2 0	E3	0	т/м ²
V	0.2	V21 0	V13	0	
V31	0) V23 0	V32	0	
G12	0	G13 0	G23	0	
y	чет нелине	йности	Ro 2	.5	T/M3
	Параметр	ы материала		Цвет	
	Парамет	ры арматуры			
	Коммента	рий			
		V		?	

б) Создание 2-й модели : «Паучек» из стержней большой жесткости

Для этого скопируем элементы перекрытия вправо на 4 м

Создадим колонну из стержневых элементов за два шага

Шаг 1

Улалим все элементы плиты в контуре сечения колонны

Создадим «паучек» из стержней большой жесткости, используя функцию – Добавить элемент - Добавить стержень.

Зададим жесткости элементам стержней колонны

Зададим жесткости для «паучка»

в) Создание 3-й модели : <u>АЖТ по размеру колонны</u>

Скопируем элементы плиты перекрытия и колонны из 2-й модели

Создание АЖТ выполняется при помощи отметки на схеме соответствующих узлов и присвоения одному из них статуса ведущего узла

Выделим все узлы, относящиеся к контуру колонны

Во вкладке – *Жесткости и связи - Абсолютно жесткое тело* – отметим центальный узел колонны (он окрасится в черный цвет). Нажать кнопку «+»

Зададим жесткое закрепление колонн во всех схемах

Выполним согласование местных осей пластин (для корректного чтения результатов). Для этого выделим все пластины перекрытия через Полифильтр - Фильтр для элементов - По жесткости.

Фильтр для элементов	
По номерам КЭ	
-	
По виду КЭ	51
-	
По типу КЭ	
-	
По жесткости	
🗹 1. Пластина Н 20 🔹 👻	
По типу жесткости	5
· · · · · · · · · · · · · · · · · · ·	
По ориентации КЭ	
	5
втол согласов. Поси орготропии	
🗌 Учитывать объекты СЭ	
Инверсно 🗶 🤋	

Нажав правую кнопку мыши обратимся к вспомогательному меню «Местные оси пластин»

В котором выполним согласование местных осей Y и X пластин и глобальных осей (для удобства чтения результатов)

При этом будет выполнено согласование метных о лобальных осей всех элементов пластин, как указано на фрагменте.

Визуализация местных осей пластин выполняется через флаги рисования, как указано на рисунке.

Как видно по рис. ниже изгибающий момент в опорной зоне в плите имеет различия для различных схем. При этом, усредненные значения будут близки.

