МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

Численные методы расчета строительных конструкций

Код направления	
подготовки /	08.04.01
специальности	
Направление подготовки /	
специальность	Строительство
Наименование ОПОП	
(профиль/магистерская	Промышленное и гражданское
программа/программа	строительство
аспирантуры)	
Год начала подготовки	2022
Уровень образования	магистратура
Форма обучения	очная, заочная

РАЗДЕЛ 2

Оглавление

Тема 1	3
Вычисление функций от матриц	. 3
Тема 2	. 16
Численно-аналитическое решение задачи теплопроводности	. 16
Тема 3	. 24
Численно-аналитическое решение задачи о колебаниях балки при ударе	. 24
Тема 4	. 32
МКЭ на примере решения задачи об изгибе балки на упругом основании	. 32
Тема 5	. 92
Аналитический метод вычисления геометрических характеристик поперечных	
сечений элементов конструкций	. 92

Тема 1.

Вычисление функций от матриц.

Определения функции от матрицы.

<u>Определение 1.</u> Приведем некоторые примеры формул, по которым ведется вычисление основных функций на ЭВМ:

$$e^{x} = 1 + x + \frac{1}{2!}x^{2} + \frac{1}{3!}x^{3} + \dots$$
 (1.1)

$$\sin(x) = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \dots$$
(1.2)

$$\cos(x) = 1 - \frac{1}{2!}x^2 + \frac{1}{4!}x^4 - \frac{1}{6!}x^6 + \dots$$
(1.3)

где *х* – аргумент функции.

Аналогично можно задать функции от матриц:

$$e^{A} = E + A + \frac{1}{2!}A^{2} + \frac{1}{3!}A^{3} + \dots$$
 (1.4)

$$\sin(A) = A - \frac{1}{3!}A^3 + \frac{1}{5!}A^5 - \frac{1}{7!}A^7 + \dots$$
(1.5)

$$\cos(A) = E - \frac{1}{2!}A^2 + \frac{1}{4!}A^4 - \frac{1}{6!}A^6 + \dots$$
(1.6)

где А – матрица (аргумент функции).

<u>Определение 2.</u> В большинстве случаев, за редким исключением, квадратная матрица *n* -го порядка может быть представлена в виде произведения:

$$A=TJT^{-1},$$

где

$$J = \begin{bmatrix} \lambda_1 & & 0 \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{bmatrix}$$
(1.7)

λ_k – собственные числа матрицы *A*; *T* – матрица, столбцы которой являются соответствующими собственными векторами.

Из разложения (7) следует:

$$A^{2} = TJT^{-1}TJT^{-1} = TJ^{2}T^{-1}A^{2} = TJT^{-1}TJT^{-1} = TJ^{2}T^{-1}$$

$$A^{2} = TJT^{-1}TJT^{-1} = TJ^{2}T^{-1}$$
(1.8)

где

$$J^{m} = \begin{bmatrix} \lambda_{1}^{m} & & 0 \\ & \lambda_{2}^{m} & \\ & & \ddots & \\ 0 & & & \lambda_{n}^{m} \end{bmatrix}$$
(1.9)

Подставив A^m в формулы (1.4)-(1.6), получим:

$$e^{A} = T \left(E + J + \frac{1}{2!} J^{2} + \frac{1}{3!} J^{3} + \dots \right) T^{-1} = T e^{J} T^{-1}$$
(1.10)

$$\sin(A) = T\sin(J)T^{-1} \tag{1.11}$$

$$\cos(A) = T\cos(J)T^{-1} \tag{1.12}$$

где

$$e^{J} = \begin{bmatrix} e^{\lambda_{1}} & & 0 \\ & e^{\lambda_{2}} & \\ & \ddots & \\ 0 & & e^{\lambda_{n}} \end{bmatrix},$$

$$\sin(J) = \begin{bmatrix} \sin \lambda_{1} & & 0 \\ & \sin \lambda_{2} & \\ & & \ddots & \\ 0 & & \sin \lambda_{n} \end{bmatrix},$$

$$(1.13)$$

$$\cos(J) = \begin{bmatrix} \cos \lambda_{1} & & 0 \\ & \cos \lambda_{2} & \\ & & \ddots & \\ 0 & & & \cos \lambda_{n} \end{bmatrix}$$

Данные преобразования позволяют записать общую формулу для определения функций от матрицы, которая существенно упрощает процесс вычисления:

$$F(A) = TF(J)T^{-1},$$
 (1.14)

где

$$F(J) = \begin{bmatrix} f(\lambda_1) & & 0 \\ & f(\lambda_2) & \\ & & \ddots & \\ 0 & & & f(\lambda_n) \end{bmatrix};$$
(1.15)

λ_k – собственные числа матрицы A, T – матрица, столбцы которой являются соответствующими собственными векторами матрицы A, n – порядок квадратной матрицы A.

Замечание 1. Самый общий случай представления квадратной матрицы в виде произведения также имеет вид жорданова разложения

$$A = TJT^{-1} \tag{1.16}$$

но при этом матрица Жордана Ј имеет квазидиагональный вид:

$$J = \begin{bmatrix} J_1 & & 0 \\ & J_2 & & \\ & & \ddots & \\ 0 & & & J_m \end{bmatrix}, \quad m \le n; \quad J_k = \begin{bmatrix} \lambda_k & 1 & & 0 \\ & \lambda_k & \ddots & \\ & & & \ddots & 1 \\ 0 & & & & \lambda_k \end{bmatrix},$$

где J_k – жорданова клетка; матрица *T* состоит из столбцов, часть которых является собственными векторами, а часть присоединенными (или корневыми) векторами, при этом

$$F(A) = TF(J)T^{-1},$$
 (1.17)

где

$$F(J) = \begin{bmatrix} F_1(J_1) & & 0 \\ & F_2(J_2) & & \\ & & \ddots & \\ 0 & & & F_m(J_m) \end{bmatrix};$$
(1.18)

$$F(J_{k}) = \begin{bmatrix} F(\lambda_{k}) & \frac{1}{1!}F'(\lambda_{k}) & \frac{1}{2!}F''(\lambda_{k}) & \dots & \frac{1}{p!}F^{(p)}(\lambda_{k}) \\ & F(\lambda_{k}) & \ddots & \ddots & \ddots & \vdots \\ & & \ddots & \frac{1}{1!}F'(\lambda_{k}) & \frac{1}{2!}F''(\lambda_{k}) \\ & & F(\lambda_{k}) & \frac{1}{1!}F'(\lambda_{k}) \\ & & F(\lambda_{k}) & \frac{1}{1!}F'(\lambda_{k}) \end{bmatrix}, \quad (1.19)$$

р – порядок *k*-ой жордановой клетки.

Более подробно данный вопрос рассматривается в специальной литературе по линейной алгебре.

Дополнительный вид определения функции от матрицы.

В случае, если порядки всех жордановых клетки равны единице тогда:

$$A = TJT^{-1},$$

где

$$T = [\bar{t}^1 \quad \bar{t}^2 \quad \dots \quad \bar{t}^n];$$
(1.20)

 $\bar{t}^{k} = [t_{1}^{k} \ t_{2}^{k} \ .. \ t_{n}^{k}]^{T}$ – собственный вектор матрицы A, т.е.

$$A\bar{t}^{k} = \lambda_{k}\bar{t}^{k}, \qquad (1.21)$$

где λ_k – собственное число; при соответствующей нормировке

$$|\bar{t}^{k}| = \sqrt{\sum_{i=1}^{N} t_{i}^{k}} = 1.$$
 (1.22)

Очевидно, что матрица Жордана Ј представима в виде разложения

$$J = \begin{bmatrix} \lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n} \end{bmatrix} = \lambda_{1} \begin{bmatrix} 1 & & & \\ & 0 & & \\ & & \ddots & \\ & & & 0 \end{bmatrix} + \lambda_{2} \begin{bmatrix} 0 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 0 \end{bmatrix} + \dots + \lambda_{n} \begin{bmatrix} 0 & & & \\ & 0 & & \\ & & \ddots & \\ & & & 1 \end{bmatrix}. \quad (1.23)$$

Матрица T^{-1} имеет вид:

$$T^{-1} = \begin{bmatrix} (\tilde{t}^{\ 1})^{*} \\ (\tilde{t}^{\ 2})^{*} \\ \vdots \\ (\tilde{t}^{\ n})^{*} \end{bmatrix}, \qquad (1.24)$$

где $(\tilde{t}^{k})^{*} - k$ -я вектор-строка матрицы T^{-1} .

Тогда матрица А может быть представлена следующим образом:

$$A = \sum_{k=1}^{N} \lambda_k p_k , \qquad (1.25)$$

где

$$p_k = \bar{t}^k \cdot (\tilde{t}^k)^* \tag{1.26}$$

– оператор проектирования представимый в виде

$$p_{k} = T_{k} \begin{bmatrix} 0 & k & \\ 0 & k & \\ & 0 & \\ & & 1 & \\ & & & 0 \\ & & & & 0 \end{bmatrix} T^{-1} = \begin{bmatrix} 0 & \dots & 0 & \bar{t}^{k} & 0 & \dots & 0 \end{bmatrix} \begin{bmatrix} 0 & \\ \vdots & \\ 0 & \\ (\tilde{t}^{k})^{*} \\ 0 & \\ \vdots & \\ 0 \end{bmatrix} = \bar{t}^{k} (\tilde{t}^{k})^{*} . \quad (1.27)$$

Покажем, что

$$p_k^2 = p_k \tag{1.28}$$

Вследствие (1.26) имеем:

$$p_k^2 = \overline{t}^k \cdot (\widetilde{t}^k)^* \overline{t}^k \cdot (\widetilde{t}^k)^*.$$

Произведение $(\tilde{t}^{k})^{*} \bar{t}^{k}$ является результатом умножения *k*-ой строки матрицы T^{-1} на *k*-й столбец матрицы *T*. В тоже время, как известно, $T^{-1}T = E$. Следовательно, $(\tilde{t}^{k})^{*} \bar{t}^{k} = 1$, что доказывает формулу (1.28).

Соответственно функция от матрицы будет иметь вид:

$$F(A) = \sum_{k=1}^{N} F(\lambda_k) p_k$$
(1.29)

В частности, справедливы формулы:

$$\sin(A) = \sum_{k=1}^{N} \sin(\lambda_k) \cdot p_k ; \quad A^{-1} = \sum_{k=1}^{N} \frac{1}{\lambda_k} \cdot p_k ;$$

$$\sqrt{A} = \sum_{k=1}^{N} \sqrt{\lambda_k} \cdot p_k .$$
(1.30)

Замечание 2.

В Matlab реализовано вычисление функций от матриц, перечисленных в первом столбце таблицы, по правилу, представленному во втором столбце таблицы

Function	Syntax for	Evaluating Function at Matrix A
exp	funm(A,	@exp)
log	funm(A,	@log)
sin	funm(A,	@sin)
COS	funm(A,	(cos)
sinh	funm(A,	@sinh)
cosh	funm(A,	@cosh)

Кроме того, для вычисления e^A , $\ln A$ и \sqrt{A} можно использовать встроенные функции expm(A), logm(A) и sqrtm(A), cootветственно.

Некоторые важные примеры приложений.

Пример 1.

Рассмотрим задачу Коши для системы обыкновенных дифференциальных уравнений первого порядка вида

$$\begin{cases} \overline{y}' = A\overline{y} + \overline{F} & x > 0\\ \overline{y}(0) = \overline{y}_0 - hayanbhoe ycnobue(заданный вектор) \end{cases}$$
(1.31)

где

$$\overline{y}(x) = [y_1(x) \ y_2(x) \ \dots y_n(x)]^T;$$

 $\overline{F}(x) = [F_1(x) \ F_2(x) \ \dots F_n(x)]^T,$

причем $y_i(x)$, i = 1,...,n – искомые функции; $F_i(x)$, i = 1,...,n – заданные функции; A – матрица, не зависящая от x.

Общее решение задачи (1.31) определяется формулой:

$$\overline{y}(x) = e^{Ax}\overline{y}_0 + \int_0^x e^{A(x-\xi)}\overline{F}(\xi)d\xi.$$
(1.32)

Пример 2.

Рассмотрим задачу Коши для системы обыкновенных дифференциальных уравнений второго порядка вида

$$\begin{cases} \overline{y}'' + Ay = F & x > 0 \\ \overline{y}(0) = y_0 \\ \overline{y}'(0) = y'_0 \end{cases} - \text{начальные условия (заданные векторы)}.$$
(1.33)

Пусть A – положительно определенная матрица, т.е. все ее собственные числа $\lambda_k > 0$. Тогда общее решение (1.33) можно записать в виде:

$$\overline{y}(x) = \cos(\sqrt{A} \cdot x) \,\overline{y}_0 + (\sqrt{A})^{-1} \sin(\sqrt{A} \cdot x) \,\overline{y}_0' + (\sqrt{A})^{-1} \int_0^x \sin(\sqrt{A}(x-\xi)) \,\overline{F}(\xi) d\xi \dots \quad (1.34)$$

Пример 3.

Рассмотрим задачу Коши для системы обыкновенных дифференциальных уравнений второго порядка вида

$$\begin{cases} \overline{y}'' = A\overline{y} + \overline{F}, \ x > 0\\ \overline{y}(0) = \overline{y}_0\\ \overline{y}'(0) = \overline{y}'_0 \end{cases} - ha \, \text{чальные условия}(\text{заданные векторы}) \quad (1.35)$$

Общее решение задачи (1.35) определяется формулой:

$$\overline{y}(x) = \frac{1}{2}ch(\sqrt{A} \cdot x)\overline{y}_0 + \frac{1}{2}(\sqrt{A})^{-1}sh(\sqrt{A} \cdot x)\overline{y}_0' + \frac{1}{2}(\sqrt{A})^{-1}\int_0^x sh(\sqrt{A}(x-\xi))\overline{F}(\xi)d\xi$$
(1.36)

где ch(x) и sh(x) – гиперболические синус и косинус от произвольного аргумента.

Решение задачи вычисления функции от матрицы в МАТLАВ

Рассмотрим задачу.

Дана матрица:

$$A = \begin{bmatrix} 5 & -3 & 4 \\ -3 & 12 & -3 \\ 4 & -3 & 5 \end{bmatrix}$$

Вычислим функцию $f(A) = \sqrt[5]{A^3} + \ln(A^2 + \cos A)$

Текст М-файла приведен ниже:

```
function fun of a
A=input('Введите матрицу A');
disp('Матрица A')
n=3;
for i=1:n
        fprintf('%12.4f', A(i,:));
        fprintf('\n');
end
[T, J] = eig(A);
disp('Матрица собственных векторов Т');
for i=1:n
        fprintf('%12.4f', T(i,:));
        fprintf('n');
end
disp('Матрица Жордана J');
for i=1:n
        fprintf('%12.4f', J(i,:));
        fprintf('\n');
end
fJ=zeros(n);
for i=1:n
```

```
fJ(i,i) = f(J(i,i));
```

end disp('Функция от матрицы Жордана fJ'); for i=1:n fprintf('%12.4f', fJ(i,:)); fprintf('\n'); end fA=T*fJ*inv(T); disp('Функция от матрицы A'); for i=1:n fprintf('%12.4f', fA(i,:));

fprintf('\n');

end

```
function p=f(x)
    p=(x^3)^(1/5)+log(x^2+(cos(x))^2);
end
```

end

Результаты расчета приведены ниже

Введите	матрицу	A[5	-3	4 ;- 3	12	- 3;4	-3	5]
Матрица	A							
5.	.0000	-3.	.000	00	Z	1.000	С	
-3.	.0000	12.	.000	00	-3	3.000	С	
4.	.0000	-3.	.000	00		5.000	С	
Матрица	собствен	ных	вен	кторон	зТ			
0.	.7071	0.	.577	74	(0.4082	2	
0.	.0000	0.	.577	74	-(0.816	5	
-0.	.7071	0.	.577	74	(.4082	2	

Матрица Жордана	J	
1.0000	0.0000	0.0000
0.0000	6.0000	0.0000
0.0000	0.0000	15.0000
Функция от матр	ицы Жордана	fJ
1.2561	0.0000	0.0000
0.0000	6.5390	0.0000
0.0000	0.0000	10.4962
Функция от матр	ицы А	
4.5571	-1.3191	3.3010
-1.3191	9.1771	-1.3191
3.3010	-1.3191	4.5571

Пример задания для выполнения ручного счета

Задание. Вычислить sin(A), если $A = \begin{bmatrix} 3 & -2 \\ -2 & 3 \end{bmatrix}$.

Матрицу можно представить в виде разложения по собственным значениям и собственным векторам

$$A = XJX^{-1}$$
, где

 $X = [\bar{x}^1 \ \bar{x}^2] = \begin{bmatrix} x_1^1 & x_1^2 \\ x_2^1 & x_2^2 \end{bmatrix} -$ матрица собственных векторов матрицы A,

расположенных по столбцам,

 $J = \begin{bmatrix} \lambda_1 & \\ & \lambda_2 \end{bmatrix}$ – диагональная матрица, где на главной диагонали расположены

собственные значения матрицы А, т.е.

$$A\overline{x}^1 = \lambda_1 \overline{x}^1 \quad \text{и} \quad A\overline{x}^2 = \lambda_2 \overline{x}^2.$$

Согласно определению $f(A) = Xf(J)X^{-1}, \quad f(J) = \begin{bmatrix} f(\lambda_1) & \\ & f(\lambda_2) \end{bmatrix}.$

Следовательно, вначале требуется найти ненулевое решение однородной СЛАУ

$$A\overline{x} = \lambda \overline{x}$$
 или $(A - \lambda E)\overline{x} = 0$.

Чтобы существовало ненулевое решение однородной СЛАУ, система должна быть вырожденной, следовательно, определитель матрицы $A - \lambda E$ должен быть нулевым: $\Delta(A - \lambda E) = 0$ – характеристическое уравнение матрицы A, корнями которого являются собственные значения матрицы A.

В нашем случае, однородная СЛАУ имеет вид:

$$(3-\lambda)x_1 - 2x_2 = 0 -2x_1 + (3-\lambda)x_2 = 0$$

Соответствующее характеристическое уравнение относительно параметра λ :

$$\Delta \left[\begin{bmatrix} (3-\lambda) & -2 \\ -2 & (3-\lambda) \end{bmatrix} \right] = (3-\lambda)^2 - (-2)^2 = (3-\lambda+(-2))(3-\lambda-(-2)) =$$
$$= (1-\lambda)(5-\lambda) = 0 \implies \begin{cases} \lambda_1 = 5 \\ \lambda_2 = 1 \end{cases} - \text{собственные значения матрицы } A = \begin{bmatrix} 3 & -2 \\ -2 & 3 \end{bmatrix}.$$

Для определения собственных векторов воспользуемся системой (1). Выразим, например, из 1-го уравнения x_2 через x_1 :

$$x_2 = \frac{3-\lambda}{2}x_1.$$

Подставим во 2-е уравнение:

$$-2x_1 + \frac{(3-\lambda)^2}{2}x_1 = 0 \Rightarrow [(3-\lambda)^2 - 2^2]x_1 = 0.$$

Поскольку коэффициент при x₁

$$[(3-\lambda)^{2}-2^{2}] = -\Delta \left(\begin{bmatrix} (3-\lambda) & -2\\ -2 & (3-\lambda) \end{bmatrix} \right) = 0,$$

следовательно, x_1 может быть любым ненулевым числом, в частности $x_1 = 1$. Тогда собственный вектор можно представить в зависимости от параметра λ :

$$\overline{x} = \begin{bmatrix} 1 \\ (3 - \lambda)/2 \end{bmatrix}$$

Отсюда собственным значениям

 $\lambda_1 = 5$ соответствует собственный вектор $\bar{x}^1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\lambda_2 = 1$ соответствует собственный вектор $\bar{x}^2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Следовательно, в разложении $A = XJX^{-1}$ для матрицы $A = \begin{bmatrix} 3 & -2 \\ -2 & 3 \end{bmatrix}$

$$X = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, \quad X^{-1} = \frac{1}{\Delta(X)} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}, \quad J = \begin{bmatrix} 5 \\ 1 \end{bmatrix}$$

Согласно определению вычисления функций от матриц

$$\sin(A) = \frac{1}{2} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \sin(5) & 1 & -1 \\ \sin(1) \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \sin(5) & \sin(1) \\ -\sin(5) & \sin(1) \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \sin(5) + \sin(1) & -\sin(5) + \sin(1) \\ -\sin(5) + \sin(1) & \sin(5) + \sin(1) \end{bmatrix}$$

sin(A) =

-0.0587	0.9002
0.9002	-0.0587

Тема 2.

Численно-аналитическое решение задачи теплопроводности

Математическая постановка задачи теплопроводности имеет вид:

$$\begin{cases} \frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2} + f(x,t) - y \text{ равнение теплопроводности,} \\ 0 < x < \ell, \quad t > 0 - n \text{ространственно} - в \text{ременная область,} \\ u(0,t) = \phi_0(t) \\ u(\ell,t) = \phi_\ell(t), \quad t \ge 0 \\ u(\ell,t) = \phi_\ell(t), \quad t \ge 0 \\ \end{pmatrix} - \kappa \text{раевые условия,} \\ u(x,0) = \psi(x), \quad 0 \le x \le \ell - \text{начальные условия.} \end{cases}$$
(2.1)

где x – координата по толщине стены, $0 \le x \le l$; t – координата по времени, $t \ge 0$; u(x,t) – значение температуры в точке x во время t; α – коэффициент температуропроводности материала; f(x,t) – функция, характеризующая мощность возможного источника тепла.

Задача (2.1) определена в пространственно-временной области Ω:

$$\Omega = \{ x, t : 0 < x < \ell, t \ge 0 \}.$$
(2.2)

Отметим, что

$$\varphi_0(0) = \psi(0); \quad \varphi_\ell(0) = \psi(\ell).$$
 (2.3)

Заметим, что поскольку задача (2.1) содержит начальные условия по времени, то она является задачей Коши.

Рассмотрим задачу Коши для системы обыкновенных дифференциальных уравнений первого порядка вида

$$\begin{cases} \overline{y}' = A\overline{y} + \overline{F} & x > 0\\ \overline{y}(0) = \overline{y}_0 & - заданный вектор \end{cases}$$
(2.4)

$$\overline{y}(x) = [y_1(x) \ y_2(x) \ \dots \ y_n(x)]^T; \quad \overline{F}(x) = [F_1(x) \ F_2(x) \ \dots \ F_n(x)]^T,$$

причем $y_i(x)$, i = 1,...,n – искомые функции; $F_i(x)$, i = 1,...,n – заданные функции; A – матрица, не зависящая от x.

Общее решение задачи (2.4) определяется формулой:

$$\overline{y}(x) = e^{Ax}\overline{y}_0 + \int_0^x e^{A(x-\xi)}\overline{F}(\xi)d\xi.$$
(2.5)

Численно-аналитический метод решения задачи.

Ниже рассмотрим численно-аналитический метод решения задачи, который состоит в следующем: по оси *x* осуществляется конечно-разностная аппроксимация, а по времени *t* рассматривается непрерывная (континуальная) задача.

Пусть x_i , i = 0,1,2,...,N,N+1 – координаты точек разбиения, причем $x_0 = 0$ и $x_{N+1} = \ell$ – граничные точки (в которых заданы краевые условия). Таким образом, искомыми будут являться функции $U_i(t)$, i = 1,2,...,N во внутренних узлах сетки. Схема аппроксимации пространственно-временной области в данном случае условно показана на рис. 2.1.

Рис. 2.1. Пространственно-временная область

Во всех внутренних точках узлах *i* = 1,2,...,*N* уравнение теплопроводности в (2.1) примет вид:

$$\frac{\partial U_i(t)}{\partial t} = \frac{\alpha}{h^2} (U_{i+1}(t) - 2 \cdot U_i(t) + U_{i-1}(t)) + F_i(t)$$
(2.6)

при этом пусть

$$F_i(t) = 0, \quad i = 1, 2, ..., N.$$
 (2.7)

В соответствии с краевыми условиями из (2.1) для граничных точек, в свою очередь, можем записать:

$$U_0(t) = \varphi_0(t), \quad U_{N+1}(t) = \varphi_\ell(t), \quad t \ge 0.$$
 (2.8)

Следовательно, уравнения теплопроводности для узлов с номерами i = 1 и i = N имеют соответственно вид:

$$\frac{\partial U_1(t)}{\partial t} = \frac{\alpha}{h^2} \left(U_2(t) - 2 \cdot U_1(t) \right) + \frac{\alpha}{h^2} \varphi_0(t); \qquad (2.9)$$

$$\frac{\partial U_1(t)}{\partial t} = \frac{\alpha}{h^2} \left(U_2(t) - 2 \cdot U_1(t) \right) + \frac{\alpha}{h^2} \varphi_0(t); \qquad (2.10)$$

Введем обозначения:

$$\overline{U}(t) = \begin{bmatrix} U_1(t) & U_2(t) & \dots & U_N(t) \end{bmatrix}^T; \overline{F}(t) = \begin{bmatrix} F_1(t) & 0 & \dots & 0 & F_N(t) \end{bmatrix}^T,$$
(2.11)

где

$$F_1(t) = \frac{\alpha}{h^2} \varphi_0(t); \quad F_N(t) = \frac{\alpha}{h^2} \varphi_l(t).$$
 (2.12)

Получаем матричную формулировку разрешающей системы уравнений:

$$\begin{cases} \overline{U}_{t}' = A\overline{U} + \overline{F} \\ \overline{U}(0) = \overline{\psi} - начальные условия, \end{cases}$$
(2.13)

где

$$A = \frac{\alpha}{h^2} \begin{bmatrix} -2 & 1 & & \\ 1 & -2 & 1 & \\ & \ddots & \ddots & \ddots \\ & & 1 & -2 & 1 \\ & & & 1 & -2 \end{bmatrix}; \qquad \overline{\psi} = \begin{bmatrix} \psi(x_1) \\ \psi(x_2) \\ \vdots \\ \psi(x_N) \end{bmatrix}; \qquad (2.14)$$
$$\overline{U}'_t = \frac{\partial}{\partial t} \overline{U}.$$

Согласно (2.4)-(2.5) общее решение задачи (2.13) имеет вид:

$$\overline{U}(t) = e^{At}\overline{U}_0 + \int_0^t e^{A(t-\tau)}F(\tau)d\tau.$$
(2.15)

Если \overline{F} не зависит от t, переходим к формуле

$$\overline{U}(t) = e^{At}\overline{U}_0 + \left(\int_0^t e^{A(t-\tau)}d\tau\right) \cdot \overline{F}.$$

Выполняем интегрирование:

$$\int_{0}^{t} e^{A(t-\tau)} d\tau = (-A^{-1}) e^{A(t-\tau)} \Big|_{0}^{t} = -A^{-1} (E - e^{At}),$$

откуда

$$\overline{U}(t) = e^{At}\overline{U}_0 - A^{-1}(E - e^{At}) \cdot \overline{F} . \qquad (2.16)$$

Реализация формулы (2.16) предполагает вычисление экспоненты от матрицы $A \cdot t$, для выполнения которого следует воспользоваться результатами предыдущего пункта. Имеем:

$$e^{At} = Te^{Jt}T^{-1}, (2.17)$$

где

T — матрица собственных векторов матрицы A; T^{-1} — обратная матрица к матрице T;

$$e^{Jt} = \begin{bmatrix} e^{\lambda_{1}t} & & & \\ & e^{\lambda_{2}t} & & \\ & & \ddots & \\ & & & e^{\lambda_{N}t} \end{bmatrix};$$
(2.18)

 λ_k – собственные числа матрицы *A*, *k* = 1, 2, ..., *N*. Аналогично можем вычислить

$$J^{-1} = \begin{bmatrix} A^{-1} = TJ^{-1}T^{-1}, & \text{где} \\ 1/\lambda_1 & & \\ & 1/\lambda_2 & \\ & & \ddots & \\ & & & 1/\lambda_N \end{bmatrix}.$$
 (2.19)

Пример решения задачи численно-аналитическим методом.

Рассмотрим решение задачи (2.1) со следующими условиями:

f(x,t) = 0 - функция, характеризующая мощность источника тепла; $<math>\alpha = 1 -$ коэффициент температуропроводности материала стены;

 $\begin{cases} \phi_0(t) = 20 \\ \phi_\ell(t) = 10 \end{cases}$ – краевые условия;

 $\psi(x) = 20 + 50x - 60x^2$ – начальные условия;

 $\ell = 1 -$ толщина стены.

Текст М-функции

```
function teplo_1_expm
function U=ut(t)
    E=eye(n);
    eAt=expm(t*A);
    U=eAt*U0-A\(E-eAt)*F;
```

```
end
s=10;
q = 20;
n=7;
L=1;
alpha=1;
h=L/(n+1);
c=alpha/h^2;
a1=ones(n-1,1);
A=diag(a1,-1)-2*eye(n)+diag(a1,1),A=c*A;
u0=g; ul=s;
F=c*[u0;zeros(n-2,1);ul];
xi=(0:h:L)';x=xi(2:n+1);
U0=q+(q+3*s)*x-2*(q+s)*x.^{2};
t=[0 0.15 1.5];
nt=length(t);res=zeros(nt,n+2);
             значения функции температуры U(x,t)\n')
fprintf('\n
for i=1:nt
    res(i,:)=[u0 ut(t(i))' ul];
fprintf('U(%4.2f):',t(i)),fprintf('%6.2f',res(i,:)),fprintf('\n')
end
hold on
plot(xi, res(1,:), '.-')
plot(xi, res(2, :), 'o-.r')
plot(xi, res(nt, :), '*:g')
grid on
s1=sprintf('t=%2.0f',t(1));
s2=sprintf('t=%4.2f',t(2));
s3=sprintf('t=%4.2f',t(nt));
legend(s1,s2,s3,0)
title(sprintf('U(x,t)=exp(At)*U0-inv(A)*(E-exp(At))*F\n%s %s %s',
s1,s2,s3))
end
```

Замечание. Здесь вычисление функции от матрицы e^{At} реализуется с использованием стандартной функции expm (At), в которой используется алгоритм

$$e^{At} = T e^{Jt} T^{-1}.$$

Результаты счета

A =

-2	1	0	0	0	0	0
1	-2	1	0	0	0	0
0	1	-2	1	0	0	0
0	0	1	-2	1	0	0
0	0	0	1	-2	1	0
0	0	0	0	1	-2	1
0	0	0	0	0	1	-2

значения функции температуры U(x,t)

U(0.00): 20.00 25.31 28.75 30.31 30.00 27.81 23.75 17.81 10.00

U(0.15): 20.00 20.12 20.04 19.57 18.59 17.07 15.04 12.62 10.00

U(1.50): 20.00 18.75 17.50 16.25 15.00 13.75 12.50 11.25 10.00 График функции распределения температуры:

Тема 3.

Численно-аналитическое решение задачи о колебаниях балки при ударе

Математическая формулировка задачи.

Рассматривается задача о действии поперечной ударной нагрузки в середине балки (рис. 3.1), определяется линия прогибов балки для любого момента времени.

Рис. 3.1. Расчетная схема балки

Математическая формулировка задачи имеет вид:

$$\begin{cases} \frac{\partial^{2} y}{\partial t^{2}} = -a_{0} \frac{\partial^{4} y}{\partial x^{4}} + F(x,t) - y \rho a B h e h u e \kappa o n e \delta a h u \ddot{u}, \\ 0 < x < \ell, \quad t > 0 - n \rho o c m \rho a h c m B e h h o - в ременная o \delta n a c m b, \\ y(0,t) = y(\ell,t) = 0 \\ y''(0,t) = y''(\ell,t) = 0 \\ y''(0,t) = y''(\ell,t) = 0 \\ y(x,0) = y_{0}(x) = 0 \\ \frac{\partial y}{\partial t}(x,0) = y_{t}'(x) = 0 \\ \end{cases} - h a u a n b h b e y c n o B u s, \quad 0 \le x \le \ell \end{cases}$$

$$(3.1)$$

где y(x,t) – прогиб балки в точке x в момент времени t; x – координата по длине балки, $0 \le x \le \ell$; t – координата по времени, $t \ge 0$; $a_0 = EJ / \rho$; EJ – изгибная жесткость балки; ρ – плотность материала балки; $F(x,t) = P \cdot \delta(x - \ell/2) \delta(t)$ – функция, моделирующая поперечное ударное воздействие по балке в точке $x = \ell/2$; $\delta(x - \ell/2)$ и $\delta(t)$ – дельта-функции.

Численно-аналитический метод решения задачи.

Для решения задачи будем использовать численно-аналитический метод, который состоит в следующем: по оси *x* осуществляется конечно-разностная аппроксимация, а по оси времени *t* рассматривается непрерывная задача (рис. 3.2).

Введем обозначения:

$$y_i = y_i(t) = y(x_i, t); \quad x_i = h \cdot i,$$

$$i = 0, 1, 2, ..., N, N + 1,$$
(3.2)

где в простейшем случае

$$h_i = const = h = \ell / (N+1).$$
 (3.3)

Здесь *N* – количество внутренних узлов конечно-разностной сетки, причем пусть *N* – нечетное число.

Для всех внутренних узлов *i* = 1, 2, ..., *N* получим конечно-разностное уравнение – дискретный аналог уравнения колебаний (3.1):

$$\frac{\partial^2 y_i}{\partial t^2} = -a_0 \frac{y_{i-1}'' - 2 \cdot y_i'' + y_{i+1}''}{h^2} + F_i(t), \quad i = 1, 2, \dots, N,$$
(3.4)

где

$$y_i'' = \frac{y_{i-1} - 2 \cdot y_i + y_{i+1}}{h^2}$$
(3.5)

– вторая конечная разность, приближенно представляющая вторую производную от искомой функции *y*(*x*, *t*) по аргументу *x*.

В соответствии с краевыми условиями из (3.1) для граничных узлов, очевидно, можем записать:

$$y_0 = 0; \quad y_0'' = 0; \quad y_{N+1} = 0; \quad y_{N+1}'' = 0.$$
 (3.6)

С учетом (3.6) преобразуются уравнения (3.4) Имеем:

$$\frac{\partial^2 y_1}{\partial t^2} = -a_0 \frac{5y_1 - 4y_2 + y_3}{h^4} + F_1;$$
(3.7)

$$\frac{\partial^2 y_2}{\partial t^2} = -a_0 \frac{-4y_1 + 6y_2 - 4y_3 + y_4}{h^4} + F_2;$$
(3.8)

$$\frac{\partial^2 y_i}{\partial t^2} = -a_0 \frac{y_{i-2} - 4y_{i-1} + 6y_i - 4y_{i+1} + y_{i+2}}{h^4} + F_i, \qquad (3.9)$$
$$i = 3, 4, \dots, N-2;$$

$$\frac{\partial^2 y_{N-1}}{\partial t^2} = -a_0 \frac{y_{N-3} - 4y_{N-2} + 6y_{N-1} - 4y_N}{h^4} + F_{N-1}; \qquad (3.10)$$

$$\frac{\partial^2 y_N}{\partial t^2} = -a_0 \frac{y_{N-2} - 4y_{N-1} + 5y_N}{h^4} + F_N.$$
(3.11)

Обоснуем, например, (3.7) и (3.8):

$$\frac{\partial^2 y_1}{\partial t^2} = -a_0 \frac{-2(y_2 - 2y_1) + y_3 - 2y_2 + y_1}{h^4} + F_1 = -a_0 \frac{5y_1 - 4y_2 + y_3}{h^4} + F_1;$$

$$\frac{\partial^2 y_2}{\partial t^2} = -a_0 \frac{(y_2 - 2y_1) - 2(y_3 - 2y_2 + y_1) + (y_4 - 2y_3 + y_2)}{h^4} + F_2 = -a_0 \frac{-4y_1 + 6y_2 - 4y_3 + y_4}{h^4} + F_2.$$

Введя обозначение

$$\overline{y}(t) = [y_1(t) \ y_2(t) \ \dots \ y_N(t)]^T,$$
 (3.12)

можем представить разрешающую систему конечно-разностных уравнений (3.7)-(3.11) в матричном виде

$$\begin{cases} \overline{y}''(t) = -A\overline{y} + \overline{F} \\ \overline{y}(0) = \overline{y}_0 \\ y'(0) = \overline{y}_0' \end{cases} - hачальные условия$$
(3.13)

где

$$A = \frac{a_0}{h^4} \begin{bmatrix} 5 & -4 & 1 & & & \\ -4 & 6 & -4 & 1 & & & \\ 1 & -4 & 6 & -4 & 1 & & \\ & 1 & -4 & 6 & -4 & 1 & \\ & & \ddots & \ddots & \ddots & \ddots & \ddots & \\ & & 1 & -4 & 6 & -4 & 1 \\ & & & 1 & -4 & 6 & -4 & 1 \\ & & & 1 & -4 & 6 & -4 & 1 \\ & & & 1 & -4 & 6 & -4 & 1 \\ & & & 1 & -4 & 5 \end{bmatrix}$$
(3.14)

Заметим, что матрица *А* положительно определена, т.е. все ее собственные числа положительные (в этом можно убедиться при их непосредственном вычислении).

Общее решение задачи (3.13) имеет вид:

$$\overline{y}(t) = \cos(\sqrt{A}t)\overline{y}_0 + \sqrt{A^{-1}}\sin(\sqrt{A}t)\overline{y}_0' + \sqrt{A^{-1}}\int_0^t \sin\sqrt{A}(t-\tau)\overline{F}(\tau)d\tau. \quad (3.15)$$

По условию рассматриваемой задачи

$$F(x,t) = P \cdot \delta(x - \ell/2) \,\delta(t), \qquad (3.16)$$

откуда следует, что

$$\overline{F}(t) = \delta(t) \cdot \overline{F}_0$$
, где
 $\overline{F}_0 = P \cdot \begin{bmatrix} 0 & \dots & 0 & 1 & 0 & \dots & 0 \end{bmatrix}^T$. (3.17)

Это значит, что в векторе \overline{F}_0 лишь один «срединный элемент» (с номером i = (N+1)/2) равен единице, а остальные элементы равны нулю. Ненулевой элемент вектора соответствует узлу конечно-разностной сетки с координатой $x = \ell/2$, в котором в момент времени t = 0 приложено сосредоточенное ударное воздействие величиной *P*.

Подставив (3.16) в (3.15), получим окончательный вид общего решения:

$$\overline{y}(t) = \sqrt{A^{-1}} \sin(\sqrt{A} t) \overline{F}_0.$$
(3.18)

Пример решения задачи численно-аналитическим методом.

Рассмотрим решение задачи (3.1) со следующими условиями:

P = 300 – величина приложенного сосредоточенного ударного воздействия; $a_0 = 130 \cdot 10^8$; $\ell = 100$ – длина балки; N = 7 – количество внутренних узлов конечно-разностной сетки.

Пример соответствующей М-функции

```
function blow_f
g=20;
s=10;
n=7;
L=100;P=300;
h=L/(n+1);
alfa=130*10^8;
x=0:h:L;
a0=6*eye(n);a0(1,1)=5;a0(n,n)=5;
a1=ones(n-1,1);
```

```
a2=ones(n-2,1);
A=a0-4* (diag(a1,-1)+diag(a1,1))+diag(a2,-2)+diag(a2,2)
A=alfa*A/h^4;
F = zeros(n, 1); F((n+1)/2) = P;
sq A=sqrtm(A);
fJ=sqrt(eig(A));
t0=pi/(4*fJ(n));
tmax=125*t0;
nt=3;
t=[t0,tmax/2,tmax];
res=zeros(nt, n+2);
fprintf('\n прогиб балки Y(x,t)\n')
for i=1:nt
    Y t=inv(sq A)*funm(sq A*t(i),'sin')*F;
    res(i,2:n+1)=Y t';
fprintf('Y(%6.4f):',t(i)),fprintf('%8.4f',res(i,:)),fprintf('\n')
end
plot(x, res(1,:),'.-',x, res((nt+1)/2,:),'o-.',x, res(nt,:),'*:')
```

```
grid on
sl=sprintf('t=%6.4f',t(1));
s2=sprintf('t=%6.4f',t((nt+1)/2));
s3=sprintf('t=%6.4f',t(nt));
legend(s1,s2,s3,0)
title(sprintf('Y(x,t)=inv(sqrt(A))*sin(sqrt(A)t))*F\n%s %s %s',
s1,s2,s3))
```

Результаты расчета:

 $A = \begin{bmatrix} 5 & -4 & 1 & 0 & 0 & 0 \\ -4 & 6 & -4 & 1 & 0 & 0 & 0 \end{bmatrix}$

1	-4	6	-4	1	0	0
0	1	-4	6	-4	1	0
0	0	1	-4	6	-4	1
0	0	0	1	-4	6	-4
0	0	0	0	1	-4	5

прогиб балки Y(x,t)

Y(0.0003): 0.0000 -0.0000 -0.0005 0.0023 0.0805 0.0023 -0.0005 -0.0000 0.0000 Y(0.0175): 0.0000 0.2308 0.4473 0.6120 0.5763 0.6120 0.4473 0.2308 0.0000 Y(0.0350): 0.0000 -0.1400 -0.3673 -0.4158 -0.4315 -0.4158 -0.3673 -0.1400 0.0000 График колебаний балки при ударе:

Замечание. Здесь вычисление функций от матрицы А реализуются следующим образом:

 $\gg \sqrt{A}$ с использованием стандартной функции sqrtm (A),

 $\gg \sin(\sqrt{A}t)$ с использованием funm(sqrtm(A), 'sin').

Тема 4.

МКЭ на примере решения задачи об изгибе балки на упругом основании

Введение.

Как известно, вопрос построения матрицы жесткости конечного элемента возникает при решении самых разнообразных задач расчета строительных конструкций, зданий и сооружений методом конечных элементов. Соответствующие стандартные подходы широко описаны в общедоступной литературе. Вместе с тем, представляется, что зачастую такие описания отличает несколько излишнее стремление к поиску механических аналогий для тех или иных построений в ущерб некоторой универсальности и алгоритмичности. Ниже предлагается универсальная методика построения матрицы жесткости конечного элемента для одномерных задач расчета строительных конструкций.

Некоторые предварительные построения.

Рассмотрим произвольный одномерный прямолинейный конечный элемент, имеющий длину *h_i* (рис. 4.1).

Узлы с номерами i и i+1 с координатами x_i и x_{i+1} расположены на краях элемента со следующими основными (узловыми) неизвестными:

$$v_i, v_i^{(1)}, v_i^{(2)}, \dots, v_i^{(m)}$$
 II $v_{i+1}, v_{i+1}^{(1)}, v_{i+1}^{(2)}, \dots, v_{i+1}^{(m)},$ (4.1)

где v_i , $v_i^{(1)}$, $v_i^{(2)}$, ..., $v_i^{(m)}$ и v_{i+1} , $v_{i+1}^{(1)}$, $v_{i+1}^{(2)}$, ..., $v_{i+1}^{(m)}$ – значения искомой функции v(x) и ее производных 1-го, 2-го, ..., *m*-го порядков по переменной *x* соответственно в узлах конечного элемента с номерами *i* и *i* + 1 соответственно.

Рис. 4.1. Произвольный одномерный прямолинейный конечный элемент

Рис. 4.2. Рассматриваемый одномерный прямолинейный конечный элемент.

Таким образом, общее число неизвестных в узлах конечного элемента равно 2(m+1). В таких случаях часто говорят, что соответствующий конечный элемент имеет 2(m+1) степеней свободы. Обозначим N = 2m+1.

Введем на рассматриваемом конечном элементе локальную координату *z*, определяемую следующей формулой:

$$z = (x - x_i)/h_i$$
, где $h_i = x_{i+1} - x_i$. (4.2)

Очевидно, что $z \in [0,1]$, причем локальные координаты узлов *i* и *i*+1 конечного данного элемента соответственно равны z = 0 и z = 1 (рис. 2).

С учетом новой используемой координаты *z* условимся далее на промежуточном этапе для удобства последующих построений понимать под основными (узловыми) неизвестными на конечном элементе величины

$$v_i, v_{i,z}^{(1)}, v_{i,z}^{(2)}, \dots, v_{i,z}^{(m)} \quad \mathbf{M} \quad v_{i+1}, v_{i+1,z}^{(1)}, v_{i+1,z}^{(2)}, \dots, v_{i+1,z}^{(m)},$$
(4.3)

где v_i , $v_{i,z}^{(1)}$, $v_{i,z}^{(2)}$, ..., $v_{i,z}^{(m)}$ и v_{i+1} , $v_{i+1,z}^{(1)}$, $v_{i+1,z}^{(2)}$, ..., $v_{i+1,z}^{(m)}$ – значения искомой функции v(z) и ее производных 1-го, 2-го, ..., *m*-го порядков по переменной *z* соответственно в узлах *i* и *i* + 1 конечного элемента, т.е. при $x \in [x_i \ x_{i+1}]$ имеем:

$$v_{z}^{(s)} = \frac{d^{s}}{dz^{s}}v; \quad v_{i,z}^{(s)} = \frac{d^{s}v}{dz^{s}}\Big|_{z=0}; \quad v_{i+1,z}^{(s)} = \frac{d^{s}v}{dz^{s}}\Big|_{z=1}.$$
(4.4)

Очевидно, что при $h_i = 1$ и соответствующем выборе системы координат основные неизвестные на конечном элементе (4.1) и (4.3) идентичны. В противном случае на основании известного правила дифференцирования сложной функции имеет место следующая взаимосвязь:

$$v^{(s)} = \frac{d^{s}}{dx^{s}} v = \frac{d^{s}v}{dz^{s}} \frac{d^{s}z}{dx^{s}} = \frac{1}{h_{i}^{s}} v_{z}^{(s)}; v_{i}^{(s)} = \frac{1}{h_{i}^{s}} v_{i,z}^{(s)};$$

$$v_{i+1}^{(s)} = \frac{1}{h_{i}^{s}} v_{i+1,z}^{(s)}, s = 1, 2, ..., m.$$
(4.5)

Условимся, что будем придерживаться в дальнейшем перечисленных ниже двух соглашений о матрицах и векторах.

1. Пусть нумерация элементов матриц и векторов начинается с нуля, т.е. для произвольной матрицы A размерности $m \times n$ и произвольного вектора \bar{x} размерности m имеем:

$$A = \begin{bmatrix} a_{0,0} & a_{0,1} & \dots & a_{0,j} & \dots & a_{0,n-1} \\ a_{1,0} & a_{1,1} & \dots & a_{1,j} & \dots & a_{1,n-1} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{i,0} & a_{i,1} & \dots & a_{i,j} & \dots & a_{i,n-1} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ a_{m-1,1} & a_{m-1,1} & \dots & a_{m-1,j} & \dots & a_{m-1,n-1} \end{bmatrix}; \ \overline{x} = \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_i \\ \dots \\ x_i \\ \dots \\ x_{m-1} \end{bmatrix}.$$
(4.6)

Соответственно произвольный элемент матрицы, расположенный в i-й строке (i = 0, 1, 2, ..., m-1) и j-м столбце (j = 0, 1, 2, ..., n-1) обозначается $a_{i,j}$. Наряду с

таким обозначением, для данного элемента будем использовать и следующее (другое): {*A*}_{*i*,*j*}.

2. Верхний индекс «*» обозначает операцию сопряжения. В действительном случае для матриц и векторов она, как известна, совпадает с операцией транспонирования, обозначаемой далее верхним индексом «*т*».

Рассмотрим аппроксимацию основных неизвестных на конечном элементе. Функция y(z) в пределах конечного элемента может быть приближена полиномом N-го порядка:

$$v(z) = (\overline{\widetilde{\alpha}}, \overline{\widetilde{z}}) = \sum_{k=0}^{N} \widetilde{\alpha}_{k} z^{k} , \qquad (4.7)$$

где

$$\overline{\widetilde{\alpha}} = [\widetilde{\alpha}_0 \quad \widetilde{\alpha}_1 \quad \widetilde{\alpha}_2 \quad \dots \quad \widetilde{\alpha}_{N-1} \quad \widetilde{\alpha}_N \]^T;$$

$$\overline{\widetilde{z}} = [1 \quad z \quad z^2 \quad \dots \quad z^{N-1} \quad z^N \]^T;$$
(4.8)

 $\overline{\tilde{\alpha}}$ – (*N* + 1) -мерный вектор коэффициентов;

Производная функции v(z) по переменной z определяется формулой:

$$v_z^{(1)}(z) = (\overline{\widetilde{\alpha}}, \overline{\widetilde{z}}^{(1)}), \qquad (4.9)$$

где $\overline{\tilde{z}}^{(1)}$ – производная вектор-функции $\overline{\tilde{z}}$ по переменной z, имеющая вид:

$$\overline{\tilde{z}}_{z}^{(1)} = \begin{bmatrix} 0 & 1 & 2z & 3z^{2} & \dots & (N-1)z^{N-2} & Nz^{N-1} \end{bmatrix}^{T} = Q^{*}\overline{\tilde{z}}, \qquad (4.10)$$

где

$$Q^{*} = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & 0 \\ 1 & 0 & 0 & \dots & 0 & 0 \\ 0 & 2 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & \dots & N & 0 \end{bmatrix}; Q = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 2 & 0 & \dots & 0 \\ 0 & 0 & 0 & 3 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & N \\ 0 & 0 & 0 & 0 & \dots & 0 \end{bmatrix};$$
(4.11)

- квадратные матрицы (N + 1)-го порядка.

Тогда, используя операцию сопряжения и (4. 9)-(4. 10), запишем:

$$v_{z}^{(1)}(z) = (\overline{\widetilde{\alpha}}, Q^{*}\overline{\widetilde{z}}) = (Q\overline{\widetilde{\alpha}}, \overline{\widetilde{z}}) = (\overline{\widetilde{\alpha}}^{(1)}, \overline{\widetilde{z}}), \qquad (4.12)$$

где

$$\overline{\widetilde{\alpha}}^{(1)} = Q\overline{\widetilde{\alpha}}; \ \overline{\widetilde{\alpha}} = [\ \widetilde{\alpha}_1 \quad 2\widetilde{\alpha}_2 \quad 3\widetilde{\alpha}_3 \quad \dots \quad (N-1)\widetilde{\alpha}_{N-2} \quad N\widetilde{\alpha}_N \quad 0 \]^T.$$
(4.13)

Аналогично для производной $y^{(s)}(z)$ произвольного *s* -го порядка имеем:

$$v_z^{(s)}(z) = (\overline{\widetilde{\alpha}}, \overline{\widetilde{z}}_z^{(s)}) = (\overline{\widetilde{\alpha}}^{(s)}, \overline{\widetilde{z}}), \qquad (4.14)$$

где

$$\overline{\tilde{z}}_{z}^{(s)} = Q^{*}\overline{\tilde{z}}_{z}^{(s-1)} = (Q^{*})^{s}\overline{\tilde{z}}; \quad \overline{\tilde{\alpha}}^{(s)} = Q\overline{\tilde{\alpha}}^{(s-1)} = Q^{s}\overline{\tilde{\alpha}}.$$
(4.15)

Приведем также *некоторые вспомогательные матричные формулы*. Матрица *Q*, определяемая формулой (4.11) может быть записана в следующем мультипликативном виде:

$$Q = DHD^{-1}, \tag{4.16}$$

где

$$D = \begin{bmatrix} 1 & & & & \\ & 1/2! & & \\ & & 1/3! & & \\ & & & \ddots & \\ & & & 1/N! \end{bmatrix}; D^{-1} = \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 2! & & \\ & & & 3! & & \\ & & & & N! \end{bmatrix}; (4.17)$$
$$H = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 \end{bmatrix}$$
(4.18)

- квадратные матрицы (*N* + 1) -го порядка.
Как видно, элементы диагональных матриц D и D^{-1} определяются соответственно формулами:

$$d_{i,j} = \begin{cases} 1/i!, \quad i = j \\ 0, \quad i \neq j; \end{cases} \quad d_{i,j}^{-1} = \begin{cases} i!, \quad i = j \\ 0, \quad i \neq j; \end{cases} \quad i, j = 0, 1, ..., N.$$
(4.19)

Тогда очевидно, что для нахождения степени произвольного s-го порядка (s = 1, 2, ...) матрицы Q имеет место соотношение:

ı.

$$Q^{s} = DH^{s}D^{-1}, (4.20)$$

где *H*^s – матрица следующего вида

s - ая побочная диагональ

	0	0	0	0	•••	0	1	0	0	0	•••	0	0	0	0	
	0	0	0	0	•••	0	0	1	0	0	•••	0	0	0	0	
	0	0	0	0	•••	0	0	0	1	0	•••	0	0	0	0	
	0	0	0	0	•••	0	0	0	0	1	•••	0	0	0	0	(4.21)
$H^{s} =$		•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••	•••		
	0	0	0	0	•••	0	0	0	0	0	•••	0	1	0	0	
	0	0	0	0	•••	0	0	0	0	0	•••	0	0	1	0	
	0	0	0	0	•••	0	0	0	0	0	•••	0	0	0	1	
	0	0	0	0	•••	0	0	0	0	0	•••	0	0	0	0	

Иными словами, матрица H^s представляет собой матрицу, у которой *s*-ая побочная диагональ состоит из единиц, а все остальные элементы матрицы равны нулю. Итак, элементы матрицы H^s определяются формулой:

$$\{H^{s}\}_{i,j} = \begin{cases} 1, & i = j + s \\ 0, & i \neq j + s; \end{cases} \quad i, j = 0, 1, ..., N.$$

$$(4.22)$$

Как видно, матрица Н является нильпотентной, т.е.

$$H^{N+k} = 0, \quad k = 1, 2, 3, \dots$$
 (4.23)

Заметим, что матрицу Н часто называют «матрицей сдвига».

Представим ниже также некоторые альтернативные формы записи аппроксимаций основных неизвестных на конечном элементе. Используя (4.15) и разложение (4.21), можем переписать (4.14) в видах:

$$v_{z}^{(s)}(z) = (\overline{\widetilde{\alpha}}, \overline{\widetilde{z}}_{z}^{(s)}) = (\overline{\widetilde{\alpha}}, (Q)^{*} \overline{\widetilde{z}}_{z}^{(s-1)}) = (\overline{\widetilde{\alpha}}, (DHD^{-1})^{*} \overline{\widetilde{z}}_{z}^{(s-1)}) = (\overline{\widetilde{\alpha}}, (D^{-1})^{*} H^{*} D^{*} \overline{\widetilde{z}}_{z}^{(s-1)}) = (D^{-1} \overline{\widetilde{\alpha}}, H^{*} D^{*} \overline{\widetilde{z}}_{z}^{(s-1)});$$

$$v_{z}^{(s)}(z) = (\overline{\widetilde{\alpha}}^{(s)}, \overline{\widetilde{z}}) = (Q\overline{\widetilde{\alpha}}^{(s-1)}, \overline{\widetilde{z}}) = (DHD^{-1}\overline{\widetilde{\alpha}}^{(s-1)}, \overline{\widetilde{z}}) = (HD^{-1}\overline{\widetilde{\alpha}}^{(s-1)}, D^{*}\overline{\widetilde{z}}).$$

Также очевидно, что на основе (4.5)

$$v(x) = (\overline{\widetilde{\alpha}}, \overline{\widetilde{z}}) = (DD^{-1}\overline{\widetilde{\alpha}}, \overline{\widetilde{z}}) = (D^{-1}\overline{\widetilde{\alpha}}, D^*\overline{\widetilde{z}}).$$

Введем обозначения:

$$\overline{z} = D^* \overline{\widetilde{z}}; \quad \overline{\alpha} = D^{-1} \overline{\widetilde{\alpha}}; \quad \overline{z}_z^{(s)} = D^* \overline{\widetilde{z}}_z^{(s)}; \quad \overline{\alpha}^{(s)} = D^{-1} \overline{\widetilde{\alpha}}^{(s)}.$$
(4.24)

с учетом которых будем иметь:

$$v(z) = (\overline{\alpha}, \overline{z}) = \sum_{k=0}^{N} \alpha_k z_k ; \qquad (4.25)$$

$$v_z^{(s)}(z) = (\overline{\alpha}, H^* \overline{z}_z^{(s-1)}) = (H\overline{\alpha}^{(s-1)}, \overline{z}), \quad s = 1, 2, \dots$$
 (4.26)

Итак, по аналогии с (4.15), очевидно, имеют место соотношения:

$$\bar{z}_{z}^{(s)} = H^{*} \bar{z}_{z}^{(s-1)} = (H^{*})^{s} \bar{z}; \quad \bar{\alpha}^{(s)} = H \bar{\alpha}^{(s-1)} = H^{s} \bar{\alpha}.$$
(4.27)

С учетом введенных обозначений структура векторов \bar{z} и $\bar{\alpha}$ следующая:

$$\bar{z} = \bar{z}(z) = \begin{bmatrix} z_0 & z_1 & z_2 & \dots & z_{N-1} & z_N \end{bmatrix}^T,$$
где
 $z_i = z^i / i!, \quad i = 0, 1, 2, \dots, N;$
(4.28)

 $\overline{\alpha} = [\alpha_0 \ \alpha_1 \ \alpha_2 \ \dots \ \alpha_{N-1} \ \alpha_N]^T$, rge $\alpha_i = i! \widetilde{\alpha}_i$, $i = 0, 1, 2, \dots, N$. (4.29)

Аппроксимация основных неизвестных на конечном элементе.

Рассмотрим основные неизвестные на конечном элементе и формулы их аппроксимаций. На основании соотношений предыдущего пункта приведем сводку установленных фактов.

Рассматривается произвольный конечный элемент [x_i x_{i+1}] (рис. 1). Под основными неизвестными в узлах с номерами i, i+1 и координатами x_i , x_{i+1} понимаются следующие основные неизвестные:

$$v_i, v_i^{(1)}, v_i^{(2)}, \dots, v_i^{(m)}$$
 II $v_{i+1}, v_{i+1}^{(1)}, v_{i+1}^{(2)}, \dots, v_{i+1}^{(m)},$ (4.30)

где v_i , $v_i^{(1)}$, $v_i^{(2)}$, ..., $v_i^{(m)}$ и v_{i+1} , $v_{i+1}^{(1)}$, $v_{i+1}^{(2)}$, ..., $v_{i+1}^{(m)}$ – значения искомой функции v(x) и ее производных 1-го, 2-го, ..., *m*-го порядков по переменной x соответственно в узлах конечного элемента с номерами i и i + 1, соответственно.

На элементе вводится локальная координата (рис. 2)

$$z = (x - x_i) / h_i$$
, где $h_i = x_{i+1} - x_i$, (4.31)

(причем очевидно, что на элементе $z \in [0,1]$) и осуществляется переход к рассмотрению «новых» (вспомогательных) основных узловых неизвестных

$$v_i, v_{i,z}^{(1)}, v_{i,z}^{(2)}, \dots, v_{i,z}^{(m)}$$
 If $v_{i+1}, v_{i+1,z}^{(1)}, v_{i+1,z}^{(2)}, \dots, v_{i+1,z}^{(m)}$, (4.32)

где v_i , $v_{i,z}^{(1)}$, $v_{i,z}^{(2)}$, ..., $v_{i,z}^{(m)}$ и v_{i+1} , $v_{i+1,z}^{(1)}$, $v_{i+1,z}^{(2)}$, ..., $v_{i+1,z}^{(m)}$ – значения искомой функции v(z) и ее производных 1-го, 2-го, ..., *m*-го порядков по переменной *z* соответственно в узлах *i* и *i* + 1 конечного элемента.

Основные неизвестные (4.32) на элементе аппроксимируются формулами

$$v(z) = (\overline{\alpha}, \overline{z}) = \sum_{k=0}^{N} \alpha_k z_k ; \qquad (4.33)$$

$$v_z^{(s)}(z) = (\overline{\alpha}, H^* \overline{z}_z^{(s-1)}) = (H\overline{\alpha}^{(s-1)}, \overline{z}), \quad s = 1, 2, ...;$$
 (4.34)

$$\bar{z}_{z}^{(s)} = H^{*} \bar{z}_{z}^{(s-1)} = (H^{*})^{s} \bar{z}; \quad \bar{\alpha}^{(s)} = H \bar{\alpha}^{(s-1)} = H^{s} \bar{\alpha}, \quad (4.35)$$

где

$$\bar{z} = \bar{z}(z) = \begin{bmatrix} z_0 \\ z_1 \\ z_2 \\ \vdots \\ z_{N-1} \\ z_N \end{bmatrix}; \ z_i = \frac{z^i}{i!}; \ \bar{\alpha} = \begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_{N-1} \\ \alpha_N \end{bmatrix}; \ H = \begin{bmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 \end{bmatrix}.$$
(4.36)

Тогда можем записать:

$$\overline{u}_{z}(z) = A_{\alpha}\overline{z}(z), \qquad (4.37)$$

где

$$A_{\alpha} = \begin{vmatrix} \alpha_{0} & \alpha_{1} & \alpha_{2} & \dots & \alpha_{N-2} & \alpha_{N-1} & \alpha_{N} \\ \alpha_{1} & \alpha_{2} & \alpha_{3} & \dots & \alpha_{N-1} & \alpha_{N} & 0 \\ \alpha_{2} & \alpha_{3} & \alpha_{4} & \dots & \alpha_{N} & 0 & 0 \\ \dots & \dots & \dots & \dots & \dots & \dots & \dots \\ \alpha_{N-2} & \alpha_{N-1} & \alpha_{N} & \dots & 0 & 0 & 0 \\ \alpha_{N-1} & \alpha_{N} & 0 & \dots & 0 & 0 & 0 \\ \alpha_{N} & 0 & 0 & \dots & 0 & 0 & 0 \end{vmatrix};$$
(4.38)

$$\overline{u}_{z}(z) = [v(z) \ v_{z}^{(1)}(z) \ v_{z}^{(2)}(z) \ \dots \ v_{z}^{(N-1)}(z) \ v_{z}^{(N)}(z)]^{T}.$$
(4.39)

Возможно также использование альтернативной формулы

$$\overline{u}_z(z) = A_z(z)\overline{\alpha}, \qquad (4.40)$$

где

$$A_{z} = \begin{vmatrix} z_{0} & z_{1} & z_{2} & \dots & z_{N-2} & z_{N-1} & z_{N} \\ 0 & z_{0} & z_{1} & \dots & z_{N-3} & z_{N-2} & z_{N-1} \\ 0 & 0 & z_{0} & \dots & z_{N-4} & z_{N-3} & z_{N-2} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & z_{0} & z_{1} & z_{2} \\ 0 & 0 & 0 & \dots & 0 & z_{0} & z_{1} \\ 0 & 0 & 0 & \dots & 0 & 0 & z_{0} \end{vmatrix}$$

$$(4.41)$$

Здесь A_{α} и A_{z} – квадратные матрицы (N + 1) -го порядка.

Руководствуясь структурой матрицы A_z , формулами (4.36), (4.41) и правилами вычисления функции от матрицы (см. далее), можем записать:

$$A_{z}(z) = \exp(zH), \qquad (4.42)$$

откуда

$$\overline{u}_{z}(z) = \exp(zH)\overline{\alpha}. \qquad (4.43)$$

Очевидным следствием формулы (4.43) является соотношение:

$$\overline{u}_{z}^{(1)}(z) = H\overline{u}(z), \qquad (4.44)$$

где $\overline{u}_{z}^{(1)}(z)$ – производная от вектор-функции $\overline{u}_{z}(z)$ по переменной z.

Вследствие нильпотентности матрицы H, для вычисления функции от матрицы типа H порядка N + 1 (см., например, (4.43)-(4.44)) и использовании соответствующего разложения в ряд можно ограничиться конечным числом членов последнего:

$$\exp(H) = E + H + \frac{1}{2!}H^2 + \frac{1}{3!}H^3 + \dots + \frac{1}{N!}H^N, \qquad (4.45)$$

Вследствие нильпотентности матрицы *H*, для вычисления функции от матрицы типа *H* порядка *N* + 1 и использовании соответствующего разложения в ряд можно ограничиться конечным числом членов последнего:

$$\exp(H) = \begin{bmatrix} 1 & 1 & 1/2! & 1/3! & \dots & 1/(N-1)! & 1/N! \\ 0 & 1 & 1 & 1/2! & \dots & 1/(N-2)! & 1/(N-1)! \\ 0 & 0 & 1 & 1 & \dots & 1/(N-3)! & 1/(N-2)! \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & 1/2! & 1/3! \\ 0 & 0 & 0 & 0 & \dots & 1 & 1/2! \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix}.$$
(4.46)

Перейдем теперь к определению коэффициентов аппроксимирующего полинома. В соответствии с принятыми обозначениями значения основных неизвестных на краях рассматриваемого элемента показаны на рис. 4.3.

Для определения коэффициентов аппроксимирующего полинома (4.33) используются следующие очевидные граничные условия:

$$B_0 \bar{u}_z(0) + B_1 \bar{u}_z(1) = \bar{v}_z, \qquad (4.47)$$

где

$$B_0 = \begin{bmatrix} E & 0 \\ 0 & 0 \end{bmatrix}; \quad B_1 = \begin{bmatrix} 0 & 0 \\ E & 0 \end{bmatrix}, \tag{4.48}$$

Рис. 4.3. Основные («новые») неизвестные в узлах конечного элемента

Причем *E* – единичная матрица (*m*+1) -го порядка; 0 – условно обозначенная в данном случае нулевая матрица (*m*+1) -го порядка;

$$\overline{v}_{z} = \begin{bmatrix} \overline{v}_{i,z} \\ \overline{v}_{i+1,z} \end{bmatrix};$$

$$\overline{v}_{i,z} = \begin{bmatrix} v_{i,z} & v_{i,z}^{(1)} & v_{i,z}^{(2)} & \dots & v_{i,z}^{(m)} \end{bmatrix}^{T};$$

$$\overline{v}_{i+1,z} = \begin{bmatrix} v_{i+1,z} & v_{i+1,z}^{(1)} & v_{i+1,z}^{(2)} & \dots & v_{i+1,z}^{(m)} \end{bmatrix}^{T}.$$
(4.49)

Подставляя (4.37) в (4.47), будем иметь:

$$\widetilde{A}_{\Gamma}\overline{\alpha} = \overline{v}_z, \quad \text{где} \quad \widetilde{A}_{\Gamma} = B_0 A_z(0) + B_1 A_z(1). \tag{4.50}$$

На основании (4.50) получим:

$$\overline{\alpha} = A_{\Gamma} \overline{v}_{z}, \quad \Gamma \text{де} \quad A_{\Gamma} = \widetilde{A}_{\Gamma}^{-1}.$$
 (4.51)

Рассмотрим структуру матрицы \widetilde{A}_{Γ} .

Исходя из (4.41), (4.45) имеем:

$$A_{z}(0) = E; \quad A_{z}(1) = \exp(H);$$
$$B_{0}A_{z}(0) = \begin{bmatrix} E & 0\\ 0 & 0 \end{bmatrix}; \quad B_{1}A_{z}(1) = \begin{bmatrix} 0 & 0\\ S_{1}(1) & S_{2}(1) \end{bmatrix},$$

где

$$S_{1} = S_{1}(z) = \begin{bmatrix} z_{0} & z_{1} & z_{2} & \dots & z_{m-2} & z_{m-1} & z_{m} \\ 0 & z_{0} & z_{1} & \dots & z_{m-3} & z_{m-2} & z_{m-1} \\ 0 & 0 & z_{0} & \dots & z_{m-4} & z_{m-3} & z_{m-2} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & z_{0} & z_{1} & z_{2} \\ 0 & 0 & 0 & \dots & 0 & z_{0} & z_{1} \\ 0 & 0 & 0 & \dots & 0 & 0 & z_{0} \end{bmatrix};$$
(4.52)

$$S_{2} = S_{2}(z) = \begin{bmatrix} z_{m+1} & z_{m+2} & z_{m+3} & \cdots & z_{N-2} & z_{N-1} & z_{N} \\ z_{m} & z_{m+1} & z_{m+2} & \cdots & z_{N-3} & z_{N-2} & z_{N-1} \\ z_{m-1} & z_{m} & z_{m+1} & \cdots & z_{N-4} & z_{N-3} & z_{N-2} \\ \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\ z_{3} & z_{4} & z_{5} & \cdots & z_{m+1} & z_{m+2} & z_{m+3} \\ z_{2} & z_{3} & z_{4} & \cdots & z_{m} & z_{m+1} & z_{m+2} \\ z_{1} & z_{2} & z_{3} & \cdots & z_{m-1} & z_{m} & z_{m+1} \end{bmatrix}.$$
(4.53)

В частности, при z = 1

$$S_{1}(1) = \begin{bmatrix} 1 & 1 & 1/2! & 1/3! & \dots & 1/(m-1)! & 1/m! \\ 0 & 1 & 1 & 1/2! & \dots & 1/(m-2)! & 1/(m-1)! \\ 0 & 0 & 1 & 1 & \dots & 1/(m-3)! & 1/(m-2)! \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & 0 & \dots & 1/2! & 1/3! \\ 0 & 0 & 0 & 0 & \dots & 1 & 1/2! \\ 0 & 0 & 0 & 0 & \dots & 0 & 1 \end{bmatrix}$$
(4.54)

Сопоставив (4.54) и (4.46), можем записать:

$$S_1(1) = \exp(H),$$
 (4.55)

где в данном случае H – матрица вида (4.36) (m + 1) -го порядка.

В свою очередь, для матрицы $S_2(z)$ при z = 1 получим:

$$S_{2}(1) = \begin{bmatrix} 1/(m+1)! & 1/(m+2)! & 1/(m+3)! & \dots & 1/(N-2)! & 1/(N-1)! & 1/N! \\ 1/m! & 1/(m+1)! & 1/(m+2)! & \dots & 1/(N-3)! & 1/(N-2)! & 1/(N-1)! \\ 1/(m-1)! & 1/m! & 1/(m+1)! & \dots & 1/(N-4)! & 1/(N-3)! & 1/(N-2)! \\ \dots & \dots & \dots & \dots & \dots & \dots \\ 1/3! & 1/4! & 1/5! & \dots & 1/(m+1)! & 1/(m+2)! & 1/(m+3)! \\ 1/2! & 1/3! & 1/4! & \dots & 1/m! & 1/(m+1)! & 1/(m+2)! \\ 1 & 1/2! & 1/3! & \dots & 1/(m-1)! & 1/m! & 1/(m+1)! \end{bmatrix}$$
(4.56)

В итоге на основании (4.50) и приведенных выше формул находим:

$$\widetilde{A}_{\Gamma} = \begin{bmatrix} E & 0 \\ S_1(1) & S_2(1) \end{bmatrix} = \begin{bmatrix} E & 0 \\ \exp(H) & S_2(1) \end{bmatrix};$$
(4.57)

$$A_{\Gamma} = \begin{bmatrix} E & 0 \\ -S^{-1} \exp(H) & S^{-1} \end{bmatrix}, \quad \text{где} \quad S = S_2(1).$$
(4.58)

Резюмируя, запишем окончательную формулу для определения коэффициентов аппроксимирующего полинома:

$$\overline{\alpha} = A_{\Gamma} \overline{\nu}_{z}, \quad \Gamma \exists e \quad A_{\Gamma} = \begin{bmatrix} E & 0 \\ -S^{-1} \exp(H) & S^{-1} \end{bmatrix}.$$
(4.59)

Универсальный алгоритм построения матриц жесткости конечного элемента.

Изложим в начале <u>построение матрицы жесткости конечного элемента</u> <u>единичной длины</u>. Это несколько упрощенная ситуация, когда $h_i = 1$, и на рассматриваемом конечном элементе [x_i x_{i+1}] глобальные координаты x и локальные z тождественны. Тогда матрица жесткости конечного элемента в общем случае, очевидно, определяется выражением

$$\int_{0}^{1} a(z)(v_{z}^{(s)}(z))^{2} dz \approx a_{i} \int_{0}^{1} (v_{z}^{(s)}(z))^{2} dz, \quad \text{где} \quad a_{i} = \int_{0}^{1} a(z) dz; \quad (4.60)$$

v = v(z) – аппроксимируемая на конечном элементе неизвестная функция; $v_z^{(s)} = v_z^{(s)}(z)$ – производная *s*-го порядка от функции v = v(z); a = a(z) – некоторая функция, определенная на конечном элементе; a_i – соответствующее осредненное на конечном элементе значение функции *a*, т.е., например,

Пусть s = 0. Тогда согласно (4.33) $u(z) = (\overline{\alpha}, \overline{z})$ и, следовательно,

$$v^{2}(z) = (\overline{\alpha}, \overline{z})(\overline{z}, \overline{\alpha}) = \overline{\alpha}^{T} [\overline{z}\overline{z}^{T}]\overline{\alpha} = \overline{\alpha}^{T} A_{zz}^{(0)}(z)\overline{\alpha}, \quad \text{где} \quad A_{zz}^{(0)}(z) = \overline{z}\overline{z}^{T}.$$
 (4.61)

Элементы матрицы $A_{zz}^{(0)}$ определяются формулой:

$$\{A_{zz}^{(0)}\}_{i,j} = z_i z_j = z^{i+j} / (i! j!), \quad i, j = 0, 1, 2, \dots, N,$$
(4.62)

где *i* и *j* – соответственно уменьшенные на единицу номер строки и номер столбца, в которых находится вычисляемый элемент матрицы.

Матрицу $A_{zz}^{(0)}(z)$ (N + 1) -го порядка можно представить в виде: $A_{zz}^{(0)}(z) = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1/2! & \\ & & & \ddots & \\ & & & & 1/N! \end{bmatrix} \begin{bmatrix} 1 & z & z^2 & \dots & z^N \\ z & z^2 & z^3 & \dots & z^{N+1} \\ z^2 & z^3 & z^4 & \dots & z^{N+2} \\ \dots & \dots & \dots & \dots & \dots \\ z^N & z^{N+1} & z^{N+2} & \dots & z^{2N} \end{bmatrix} \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1/2! & & \\ & & & \ddots & \\ & & & & 1/N! \end{bmatrix}$. (4.63)

На основании полученных соотношений имеем:

$$\int_{0}^{1} v^{2}(z) dz = \overline{\alpha}^{T} \left[\int_{0}^{1} A_{zz}^{(0)}(z) dz \right] \overline{\alpha} = \overline{\alpha}^{T} A_{0} \overline{\alpha} = (A_{0} \overline{\alpha}, \overline{\alpha}),$$
(4.64)
rge $A_{0} = \int_{0}^{1} A_{zz}^{(0)}(z) dz,$

где A_0 – числовая матрица.

Исходя из (4.62) и (4.64) по аналогии можем записать формулу для элементов матрицы A_0 :

$$\{A_0\}_{i,j} = \frac{1}{i!\,j!} \int_0^1 z^{i+j} dz = \frac{1}{i!\,j!} \frac{1}{i+j+1} z^{i+j+1} \bigg|_0^1 = \frac{1}{i!} \frac{1}{j!} \frac{1}{i+j+1}.$$
 (4.65)

Исходя из (4.65), структура матрицы A_0 (N + 1) -го порядка имеет вид:

$$A_{0} = \begin{bmatrix} 1 & & & \\ 1 & & \\ & 1/2! & \\ & & \ddots & \\ & & & 1/N! \end{bmatrix} \begin{bmatrix} 1 & 1/2 & 1/3 & \dots & 1/(N+1) \\ 1/2 & 1/3 & 1/4 & \dots & 1/(N+2) \\ 1/3 & 1/4 & 1/5 & \dots & 1/(N+3) \\ \dots & & \dots & \dots & \dots \\ 1/(N+1) & 1/(N+2) & 1/(N+3) & \dots & 1/(2N+1) \end{bmatrix} \times$$
(4.66)
$$\times \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1/2! & & \\ & & & \ddots & \\ & & & & 1/N! \end{bmatrix};$$

Руководствуясь (4.60), (4.61) и (4.64), получим:

$$a_{i} \int_{0}^{1} v^{2}(z) dz = a_{i} (A_{0}\overline{\alpha}, \overline{\alpha}) = a_{i} (A_{0}A_{\Gamma}\overline{v}_{z}, A_{\Gamma}\overline{v}_{z}) =$$

$$= a_{i} (A_{\Gamma}^{T}A_{0}A_{\Gamma}\overline{v}_{z}, \overline{v}_{z}) = a_{i} (K_{0}\overline{v}_{z}, \overline{v}_{z}) = (K_{i,z}\overline{v}_{z}, \overline{v}_{z}), \qquad (4.67)$$

где

$$K_{i,z} = a_i K_0; \quad K_0 = A_{\Gamma}^* A_0 A_{\Gamma}.$$
 (4.68)

Матрица $K_{i,z}$ является матрицей жесткости конечного элемента. Как видно, матрица K_0 представляет собой матрицу жесткости при единичном значении параметра a_i , т.е. при $a_i = 1$. В итоге получили:

$$\int_{0}^{1} a(z) v_{z}^{2}(z) dz \Longrightarrow (\tilde{K}_{i,z} \bar{v}_{z}, \bar{v}_{z}).$$
(4.69)

Рассмотрим теперь случай (4.60) для произвольного значения *s*. На основании (4.33)-(4.35) имеем: $v_z^{(s)}(z) = (H^s \overline{\alpha}, \overline{z})$. Тогда

$$[v_z^{(s)}(z)]^2 = (H^s\overline{\alpha},\overline{z})(\overline{z},H^s\overline{\alpha}) = \overline{\alpha}^T (H^s)^T [\overline{z}\overline{z}^T] H^s\overline{\alpha} = \overline{\alpha}^T A_{zz}^{(s)}(z)\overline{\alpha}, \quad (4.70)$$

где

$$A_{zz}^{(s)}(z) = (H^{s})^{T} [\bar{z}\bar{z}^{T}] H^{s} = (H^{s})^{T} A_{zz}^{(0)}(z) H^{s}.$$
(4.71)

Далее находим (ниже, как видно, A_s – числовая матрица):

$$\int_{0}^{1} \left[v^{(s)}(z) \right]^{2} dz = \overline{\alpha}^{T} \left[\int_{0}^{1} A_{zz}^{(s)}(z) dz \right] \overline{\alpha} = \overline{\alpha}^{T} A_{s} \overline{\alpha} = (A_{s} \overline{\alpha}, \overline{\alpha}), \quad (4.72)$$

где

$$A_{s} = \int_{0}^{1} A_{zz}^{(s)}(z) dz = (H^{s})^{T} A_{0} H^{s}.$$
(4.73)

Руководствуясь (4.60), (4.61) и (4.71), получим:

$$a_{i}\int_{0}^{1} (v^{(s)}(z))^{2} dz = a_{i}(A_{s}\overline{\alpha},\overline{\alpha}) = a_{i}(A_{s}A_{\Gamma}\overline{v},A_{\Gamma}\overline{v}) =$$

$$= a_{i}(A_{\Gamma}^{T}A_{s}A_{\Gamma}\overline{v},\overline{v}) = a_{i}(K_{s}\overline{v}_{z},\overline{v}_{z}) = (\widetilde{K}_{i,z}^{(s)}\overline{v}_{z},\overline{v}_{z}),$$

$$(4.74)$$

где

$$K_{i,z}^{(s)} = a_i K_s; \quad K_s = A_{\Gamma}^T A_s A_{\Gamma} = A_{\Gamma}^T (H^s)^T A_0 H^s A_{\Gamma}.$$
(4.75)

Матрица $K_{i,z}^{(s)}$ является матрицей жесткости конечного элемента, матрица K_s представляет собой матрицу жесткости при $\tilde{a} = 1$. В итоге

$$\int_{0}^{1} a(z)(v^{(s)}(z))^{2} dz \Longrightarrow (K_{i,z}^{(s)} \bar{v}_{z}, \bar{v}_{z}).$$
(4.76)

Теперь рассмотрим <u>построение матрицы жесткости конечного элемента</u> <u>произвольной длины</u>, т.е. ситуацию, когда длина *h_i* конечного элемента произвольна (рис. 1). Согласно (4.2) имеем:

$$x = x_i + zh_i$$
, где $z \in [0,1]$. (4.77)

Итак, v(x) и $v^{(s)}(x)$, s = 1, 2, ..., m – соответственно искомая функция на конечном элементе и ее производные, имеющие порядки s = 1, 2, ..., m, т.е.

$$v^{(s)} = d^{s} v / dx^{s} . ag{4.78}$$

Очевидно, что исходя из правила дифференцирования сложной функции (см. также (4.5)) и того факта, что $dz / dx = 1 / h_i$, можем записать:

$$v^{(s)}(x) = (1/h_i^s) \cdot v_z^{(s)}(z), \quad s = 1, 2, ..., m.$$
(4.79)

В качестве узловых неизвестных принимаются v_i , $v_i^{(1)}$, $v_i^{(2)}$, ..., $v_i^{(m)}$ и v_{i+1} , $v_{i+1}^{(1)}$, $v_{i+1}^{(2)}$, ..., $v_{i+1}^{(m)}$ – значения искомой функции v(x) и ее производных 1-го, 2-го, ..., *m*-го порядков по переменной *x* соответственно в узлах конечного элемента с номерами *i* и *i* + 1 соответственно, т.е.

$$v_i^{(s)} = \frac{d^s v}{dx^s} \bigg|_{x=x_i}; \quad v_{i+1}^{(s)} = \frac{d^s v}{dx^s} \bigg|_{x=x_{i+1}}.$$
(4.80)

Следовательно, на основании (4.5), (4.79) и (4.80) получим:

$$v_i^{(s)} = (1/h_i^s) \cdot v_{i,z}^{(s)}; \quad v_{i+1}^{(s)} = (1/h_{i+1}^s) \cdot v_{i,z}^{(s)}, \quad s = 1, 2, ..., m.$$
(4.81)

Руководствуясь (4.46) и (4.81), будем иметь:

$$\overline{v}_z = D_h \overline{v}; \quad \overline{v} = D_h^{-1} \overline{v}_z, \tag{4.82}$$

где \overline{v} – вектор основных неизвестных на конечном элементе; D_h , D_h^{-1} – матрицы (N+1)-го порядка,

$$\overline{v} = \begin{bmatrix} \overline{v}_i \\ \overline{v}_{i+1} \end{bmatrix}; \ \overline{v}_i = \begin{bmatrix} v_i & v_i^{(1)} & v_i^{(2)} & \dots & v_i^{(m)} \end{bmatrix}^T;$$

$$\overline{v}_{i+1} = \begin{bmatrix} v_{i+1} & v_{i+1}^{(1)} & v_{i+1}^{(2)} & \dots & v_{i+1}^{(m)} \end{bmatrix}^T.$$
(4.83)

Матрица жесткости конечного элемента определяется выражением

$$\int_{x_i}^{x_{i+1}} a(x)(v^{(s)}(x))^2 dx \approx a_i \int_{x_i}^{x_{i+1}} (v^{(s)}(x))^2 dx = a_i \frac{1}{h_i^{2s-1}} \int_0^1 (v_z^{(s)}(z))^2 dz, \quad (4.86)$$

где v = v(x) – аппроксимируемая на конечном элементе неизвестная функция; $v^{(s)} = v^{(s)}(x)$ – производная *s*-го порядка от функции v = v(x); a = a(x) – некоторая функция, определенная на конечном элементе; a_i – соответствующее осредненное на элементе значение функции *a*, т.е., например,

$$a_{i} = \frac{1}{h_{i}} \int_{x_{i}}^{x_{i+1}} a(x) dx = \int_{0}^{1} a(z) dz.$$
(4.87)

Как и в предыдущем пункте начнем рассмотрение с частного случая, когда s = 0. По аналогии с (4.67) и с учетом (4.82) и (4.86) имеем:

$$a_{i}h_{i}\int_{0}^{1}(v(z))^{2}dz = a_{i}h_{i}(A_{0}\overline{\alpha},\overline{\alpha}) = a_{i}h_{i}(A_{0}A_{\Gamma}\overline{v}_{z},A_{\Gamma}\overline{v}_{z}) = a_{i}h_{i}(A_{\Gamma}^{T}A_{0}A_{\Gamma}\overline{v}_{z},\overline{v}_{z}) = a_{i}h_{i}(D_{h}^{T}A_{\Gamma}^{T}A_{0}A_{\Gamma}D_{h}\overline{v},\overline{v}) = a_{i}h_{i}(D_{h}^{T}\widetilde{K}_{0,z}D_{h}\overline{v},\overline{v}) = (K_{i}\overline{v},\overline{v}),$$

$$(4.88)$$

где

$$K_i = a_i h_i D_h^T K_0 D_h; \quad K_0 = A_\Gamma^T A_0 A_\Gamma.$$
 (4.89)

Матрица K_i является матрицей жесткости конечного элемента. Как видно, матрица K_0 представляет собой матрицу, не зависящую от характеристик (длина, физические параметры и т.д.) элемента. В итоге:

$$a_{i} \int_{x_{i}}^{x_{i+1}} (v(x))^{2} dx = a_{i} h_{i} \int_{0}^{1} (v(z))^{2} dz = (K_{i} \overline{v}, \overline{v}).$$
(4.90)

Рассмотрим теперь случай (4.86) для произвольного значения *s*. Здесь, по аналогии с (4.74) и (4.88)-(4.90), можем записать:

$$a_{i} \frac{1}{h_{i}^{2s-1}} \int_{0}^{1} (v^{(s)}(z))^{2} dz = a_{i} \frac{1}{h_{i}^{2s-1}} (A_{s} \overline{\alpha}, \overline{\alpha}) = a_{i} \frac{1}{h_{i}^{2s-1}} (A_{s} A_{\Gamma} \overline{v}_{z}, A_{\Gamma} \overline{v}_{z}) =$$

$$= a_{i} h_{i}^{1-2s} (A_{\Gamma}^{T} A_{s} A_{\Gamma} \overline{v}_{z}, \overline{v}_{z}) = a_{i} h_{i}^{1-2s} (D_{h}^{T} A_{\Gamma}^{T} A_{s} A_{\Gamma} D_{h} \overline{v}, \overline{v}) =$$

$$= a_{i} h_{i}^{1-2s} (D_{h}^{T} \widetilde{K}_{s,z} D_{h} \overline{v}, \overline{v}) = (K_{i}^{(s)} \overline{v}, \overline{v}), \qquad (4.91)$$

где

$$K_{i}^{(s)} = (a_{i} / h_{i}^{2s-1}) \cdot D_{h}^{T} K_{s} D_{h}; \quad K_{s} = A_{\Gamma}^{T} A_{s} A_{\Gamma} = A_{\Gamma}^{T} (H^{s})^{T} A_{0} H^{s} A_{\Gamma}.$$
(4.92)

Матрица $K_i^{(s)}$ является матрицей жесткости конечного элемента. Как видно, матрица K_s представляет собой матрицу, не зависящую от характеристик (длина, физические характеристики и т.д.) элемента. В итоге:

$$a_{i} \int_{x_{i}}^{x_{i+1}} (v^{(s)}(x))^{2} dx = a_{i} \frac{1}{h_{i}^{2s-1}} \int_{0}^{1} (v_{z}^{(s)}(z))^{2} dz \Longrightarrow (K_{i}^{(s)} \overline{v}_{z}, \overline{v}_{z}).$$
(4.93)

Итак, резюмируя полученные соотношения, можем записать:

– для матриц жесткости типа

$$a_{i} \int_{x_{i}}^{x_{i+1}} (v^{(s)}(x))^{2} dx = a_{i} \frac{1}{h_{i}^{2s-1}} \int_{0}^{1} (v_{z}^{(s)}(z))^{2} dz$$
(4.94)

имеем:

$$K_{i}^{(s)} = (a_{i} / h_{i}^{2s-1}) \cdot D_{h}^{T} K_{s} D_{h}; \quad K_{s} = A_{\Gamma}^{T} A_{s} A_{\Gamma} = A_{\Gamma}^{T} (H^{s})^{T} A_{0} H^{s} A_{\Gamma}. \quad (4.95)$$

– для матриц жесткости типа (частный случай (4.94) при s = 0)

$$\widetilde{a}_{i} \int_{x_{i}}^{x_{i+1}} (v(x))^{2} dx = a_{i} h_{i} \int_{0}^{1} (v(z))^{2} dz = (K_{i} \overline{v}, \overline{v})$$
(4.96)

имеем:

$$K_{i} = a_{i}h_{i}D_{h}^{T}K_{0}D_{h}; \quad K_{0} = A_{\Gamma}^{T}A_{0}A_{\Gamma}.$$
 (4.97)

Заметим, что коэффициенты a_i в формулах (4.94)-(4.95) и (4.96)-(4.97) несмотря на идентичность обозначений в общем случае различны.

Универсальный алгоритм построения вектора нагрузок конечного элемента.

Вектор нагрузки конечного элемента единичной длины определяется при интегрировании выражения вида:

$$\int_{0}^{1} q(z)v^{(s)}(z)dz \approx \tilde{q}\int_{0}^{1} v^{(s)}(z)dz, \quad \Gamma \exists e \quad \tilde{q} = \int_{0}^{1} q(z)dz, \quad (4.98)$$

т.е. \tilde{q} – осредненное значение функции нагрузки q(z).

После интегрирования находим:

$$\int_{0}^{1} q(z)v^{(s)}(z)dz = \tilde{q}(\overline{R}_{s}, \overline{v}), \qquad (4.99)$$

где \overline{R}_s – называется вектором нагрузки соответствующим функции $v^{(s)}(z)$.

Получим ниже формулы для вектора нагрузки при различных *s* .

$$\int_{0}^{1} q(z)v(z)dz \approx \tilde{q}\int_{0}^{1} v(z)dz = \tilde{q}(\bar{b}_{0}, \bar{\alpha}) = \tilde{q}(\bar{b}_{0}, A_{\Gamma}\bar{v}) = \tilde{q}(A_{\Gamma}^{T}\bar{b}_{0}, \bar{v}) = \tilde{q}(\bar{R}_{0}, \bar{v});$$

т.е.

$$\int_{0}^{1} q(z)v(z)dz \approx \tilde{q}(\overline{R}_{0}, \overline{v}), \quad \text{где} \quad \overline{R}_{0} = A_{\Gamma}^{T}\overline{b}_{0}.$$
(4.101)

Случай произвольного значения s. Имеем:

$$\int_{0}^{1} v^{(s)}(z) dz = \overline{\alpha}^{T} (H^{s})^{T} \overline{b}_{0} = \overline{\alpha}^{T} \overline{b}_{s}, \quad \overline{b}_{s} = (H^{s})^{T} \overline{b}_{0}; \quad (4.102)$$

$$\int_{0}^{1} q(z) v^{(s)}(z) dz \approx \widetilde{q} \overline{\alpha}^{T} \overline{b}_{s} = \widetilde{q}(\overline{b}_{s}, \overline{\alpha}) = \widetilde{q}(A_{\Gamma}^{T} \overline{b}_{s}, \overline{v}),$$

т.е.

$$\int_{0}^{1} q(z)v^{(s)}(z)dz \approx \tilde{q}(\overline{R}_{s}, \overline{v}), \quad \text{где} \quad \overline{R}_{s} = A_{\Gamma}^{T}\overline{b}_{s}.$$
(4.103)

Для конечного элемента произвольной длины получаем:

$$\int_{x_{i}}^{x_{i+1}} q(x)v^{(s)}(x)dx = \tilde{q} \cdot \frac{h}{h^{s}} \int_{0}^{1} v_{z}^{(s)}(z)dz =$$

$$= \tilde{q} \frac{1}{h^{s-1}} (A_{\Gamma}^{T} \bar{b}_{s}, \bar{v}_{z}) = \tilde{q} \frac{1}{h^{s-1}} (\bar{R}_{sz}, \bar{v}_{z}) = \tilde{q} \frac{1}{h^{s-1}} (\bar{R}_{sz}, D_{h} \bar{v}) = \tilde{q} (\bar{R}_{s}, \bar{v}),$$
(4.104)

где

$$\overline{R}_{s} = \frac{1}{h^{s-1}} D_{h}^{T} \overline{R}_{sz}, \quad \overline{R}_{sz} = A_{\Gamma}^{T} \overline{b}_{s}, \quad \overline{b}_{s} = (H^{s})^{T} \overline{b}_{0}.$$

$$(4.105)$$

Численное решение задачи об изгибе балки на упругом основании.

Предварительное замечание.

Пусть задан функционал вида

$$\Phi(x) = \frac{1}{2} (Ax, x) - (b, x) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j - \sum_{i=1}^{n} b_i x_i, \qquad (4.106)$$

где A – симметричная $(A = A^*)$ положительно определенная матрица, т.е. (Ax, x) > 0 при всех x. Свойство положительной определенности соответствует положительности всех собственных чисел матрицы A. Найти min $\Phi(x)$.

Условие минимума:

$$\begin{cases} \frac{\partial \Phi(x)}{\partial x_i} = \sum_{j=1}^n a_{ij} x_j - b_i = 0 \\ i = 1, 2, \dots, n \end{cases} \Rightarrow Ax = b, \qquad (4.107)$$

т.е. существует взаимно однозначное соответствие между задачей о минимуме функционала (1) и системой линейных уравнений Ax = b.

Общая постановка задачи об изгибе балки на упругом основании (модель Винклера).

Суть модели Винклера состоит в предположении, что реакция основания r(x) в произвольной точке балки x пропорциональна ее прогибу в этой точке: $r(x) = \beta y$. Поэтому графически такую модель можно представить пружинками, не связанными друг с другом, каждая из которых имеет жесткость, пропорциональную прогибу балки в этой точке (рис. 4.4).

Рис. 4.4. Расчетная схема балки.

Напряженно-деформируемое состояние такой балки соответствует решению задачи о минимуме следующего функционала (функционала энергии): функция прогибов балки y(x), вызванных силами P, распределенной нагрузкой q и изгибающими моментами M, является условием минимума функционала энергии балки (т.е. принесет минимальное значение этому функционалу)

$$\Phi(y) = \frac{1}{2} \int_{0}^{l} \left(EJ(y'')^{2} + \beta y^{2} \right) dx - \int_{0}^{l} q(x)y dx - M_{0}y'(0) - M_{1}y'(l) - P_{0}y(0) - P_{1}y(l) \quad (4.108)$$

где

EJ(x) – жесткость балки при изгибе (изгибная жесткость);

β(x) – коэффициент упругости основания (коэффициент постели);

 $q(x), M_0, P_0, M_\ell, P_\ell$ – заданные нагрузки.

Замечание. Из курса вариационного исчисления следует, что решение такой задачи совпадает с решением следующей краевой задачи:

$$\begin{array}{l} \left(EJy''\right)'' + \beta y = q(x), \quad x \in (0,l) \\ EJy''(0) = -M_0 \\ EJy'''(0) = P_0 \\ EJy''(l) = -M_l \\ EJy'''(l) = P_l \end{array} \right\} - \kappa paeeble \ ycлoвия,$$
(4.109)

что соответствует исходной постановке, обычно формулируемой в курсе «Сопротивление материалов».

Метод конечных элементов (МКЭ).

Разобьем отрезок (0, l), занимаемый балкой, на (n-1) частей (элементов); x_i – координаты точек разбиения, i – номер точки, $h_i = x_{i+1} - x_i$ – длина i-го элемента (рис. 4.5).

Рис. 4.5. Конечно-элементная разбивка

В каждой *i*-ой точке разбиения примем в качестве неизвестных y_i и y'_i , i = 1, 2, ..., n, т.е. всего 2n-неизвестных.

При этом

$$\Phi(y) = \sum_{i=1}^{n-1} \Phi_i(y), \qquad (4.110)$$

где

$$\Phi_{i}(y) = \frac{1}{2} \int_{x_{i}}^{x_{i+1}} (EJ(y'')^{2} + \beta y^{2}) dx - \int_{x_{i}}^{x_{i+1}} qy dx + \delta_{i,1}(-M_{0}y_{1}' - P_{0}y_{1}) + \delta_{i,n-1}(-M_{1}y_{n}' - P_{1}y_{n})$$

Здесь

$$\delta_{i,k} = \begin{cases} 1 & i = k \\ 0 & i \neq k \end{cases}$$
 – символ Кронекера.

Локальные построения на *i*-ом элементе.

Переходим к локальным координатам: $t = \frac{x - x_i}{h_i}$, $x_i \le x \le x_{i+1}$. При этом имеют

место следующие соотношения:

$$\begin{cases} x = x_i \Longrightarrow t = 0\\ x = x_{i+1} \Longrightarrow t = 1 \end{cases}, \quad \frac{d}{dx} = \frac{d}{dt} \cdot \frac{dt}{dx} = \frac{1}{h_i} \frac{d}{dt}, \quad dx = h_i \cdot dt. \end{cases}$$

Представим неизвестную функцию прогиба у(х) в виде кубической параболы

$$y(x) = v_i(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3, \ x_i \le x \le x_{i+1}$$
(4.111)

Для определения 4-х параметров a_0 , a_1 , a_2 , a_3 воспользуемся 4-мя узловыми значениями:

$$y_{i} = y(x_{i}) = v_{i}(0), \quad y_{i}' = \frac{dy}{dx}(x_{i}) = \frac{1}{h_{i}}\frac{dv_{i}}{dt}(0),$$
$$y_{i+1} = y(x_{i+1}) = v_{i}(1), \quad y_{i+1}' = \frac{dy}{dx}(x_{i+1}) = \frac{1}{h_{i}}\frac{dv_{i}}{dt}(1).$$

Поскольку $\frac{dv_i}{dt}(t) = a_1 + 2a_2t + 3a_3t^2$, получаем следующую систему линейных

алгебраических уравнений относительно параметров a_0 , a_1 , a_2 , a_3 :

$$\begin{cases} a_0 = y_i \\ a_1 = h_i y'_i \\ a_0 + a_1 + a_2 + a_3 = y_{i+1} \\ a_1 + 2a_2 + 3a_3 = h_i y'_{i+1} \end{cases}$$
(4.112)

Введем следующие обозначения

$$\overline{a}^{i} = \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \\ a_{3} \end{bmatrix}, \quad \overline{y}^{i} = \begin{bmatrix} y_{i} \\ y'_{i} \\ y_{i+1} \\ y'_{i+1} \end{bmatrix}, \quad D_{i} = \begin{bmatrix} 1 & & & \\ & h_{i} & & \\ & & 1 & \\ & & & h_{i} \end{bmatrix}, \quad A_{\Gamma} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix}.$$

Тогда система уравнений (4.112) может быть представлена в матрично-векторном виде:

$$A_{\Gamma}\bar{a}^{i} = D_{i}\bar{y}^{i} \tag{4.113}$$

Следовательно

$$\overline{a}^{i} = A_{\Gamma}^{-1} D_{i} \overline{y}^{i} = A D_{i} \overline{y}^{i}, \quad \text{где } A = A_{\Gamma}^{-1}$$

$$(4.114)$$

Легко проверить, что

$$A = A_{\Gamma}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & -2 & 3 & -1 \\ 2 & 1 & -2 & 1 \end{bmatrix}$$
(4.115)

Обозначим $\bar{t} = \begin{bmatrix} 1 \\ t \\ t^2 \\ t^3 \end{bmatrix}$, тогда $v_i(t) = (\bar{a}^i, \bar{t}) = (\bar{a}^i)^{\mathrm{T}} \bar{t} = (\bar{t}, \bar{a}^i) = \bar{t}^{\mathrm{T}} \bar{a}^i -$ скалярное

произведение векторов \bar{t} и \bar{a}^i . Рассмотрим вычисление производных.

$$\frac{dy}{dx} = \frac{1}{h_i} \frac{dv_i}{dt} = \frac{1}{h_i} \frac{d}{dt} (\bar{a}^i, \bar{t}) = \frac{1}{h_i} (\bar{a}^i, \frac{d}{dt} \bar{t}),$$
$$\frac{d}{dt} \bar{t} = \begin{bmatrix} 0\\1\\2t\\3t^2 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0\\1 & 0 & 0 & 0\\0 & 2 & 0 & 0\\0 & 0 & 3 & 0 \end{bmatrix} \begin{bmatrix} 1\\t\\t^2\\t^3 \end{bmatrix} = S\bar{t}, \text{ где } S = \begin{bmatrix} 0 & 0 & 0 & 0\\1 & 0 & 0 & 0\\0 & 2 & 0 & 0\\0 & 0 & 3 & 0 \end{bmatrix}$$

T.e.

$$\frac{dy}{dx} = \frac{1}{h_i} (\bar{a}^i, S\bar{t}) = \frac{1}{h_i} (S^{\mathrm{T}}\bar{a}^i, \bar{t})$$
(4.116)

Далее

$$\frac{d^{2}y}{dx^{2}} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d}{dx} \left(\frac{1}{h_{i}} (\bar{t}, S^{\mathrm{T}}\bar{a}^{i}) \right) = \frac{1}{h_{i}} \left(\frac{1}{h_{i}} (\frac{d}{dt}\bar{t}, S^{\mathrm{T}}\bar{a}^{i}) \right) = \frac{1}{h_{i}^{2}} ((S^{2})^{\mathrm{T}}\bar{a}^{i}, \bar{t}), \quad (4.117)$$

где
$$S^{2} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \end{bmatrix}$$

$$\frac{d^{3}y}{dx^{3}} = \frac{d}{dx} \left(\frac{d^{2}y}{dx^{2}} \right) = \frac{d}{dx} \left(\frac{1}{h_{i}^{2}} (\bar{t}, (S^{2})^{\mathrm{T}} \bar{a}^{i}) \right) = \frac{1}{h_{i}} \left(\frac{1}{h_{i}^{2}} (\frac{d}{dt} \bar{t}, (S^{2})^{\mathrm{T}} \bar{a}^{i}) \right)$$
$$= \frac{1}{h_{i}^{3}} ((S^{3})^{\mathrm{T}} \bar{a}^{i}, \bar{t}), \qquad (4.118)$$

И

$$\frac{d^4 y}{dx^4} = \frac{1}{h_i^4} ((S^4)^{\mathrm{T}} \bar{a}^i, \bar{t}) = 0$$
(4.119)

Построение локальной матрицы жесткости на *i*-ом элементе.

С учетом представленных выше локальных построений вычислим квадратичную часть функционала Φ_i :

$$\int_{x_i}^{x_{i+1}} \left(EJ(y'')^2 + \beta y^2 \right) dx \ A = A_{\Gamma}^{-1}$$
(4.120)

Рассмотрим общий случай $\int_{x_i}^{x_{i+1}} \left(\frac{d^p y}{dx^p}\right)^2 (x) dx, \ p = 0,1,2,3$

$$\int_{x_{i}}^{x_{i+1}} \left(\frac{d^{p} y}{dx^{p}}\right)^{2}(x) dx = \frac{h_{i}}{h_{i}^{2p}} \int_{0}^{1} \left(\frac{d^{p} v}{dt^{p}}\right)^{2}(t) dt = \frac{1}{h_{i}^{2p-1}} ((S^{p})^{\mathrm{T}} \overline{a}^{i})^{\mathrm{T}} \int_{0}^{1} t \overline{t} \overline{t}^{\mathrm{T}} dt (S^{p})^{\mathrm{T}} \overline{a}^{i} = \frac{1}{h_{i}^{2p-1}} ((S^{p})^{\mathrm{T}} \overline{a}^{i})^{\mathrm{T}} T_{0} (S^{p})^{\mathrm{T}} \overline{a}^{i} = \frac{1}{h_{i}^{2p-1}} ((S^{p})^{\mathrm{T}} \overline{a}^{i}, T_{0} (S^{p})^{\mathrm{T}} \overline{a}^{i}),$$

$$T_{0} = \int_{0}^{1} \bar{t}\bar{t}^{\mathrm{T}}dt = \int_{0}^{1} \begin{bmatrix} 1\\t\\t^{2}\\t^{3} \end{bmatrix} \begin{bmatrix} 1 & t & t^{2} & t^{3} \end{bmatrix} dt = \int_{0}^{1} \begin{bmatrix} 1 & t & t^{2} & t^{3}\\t & t^{2} & t^{3} & t^{4}\\t^{2} & t^{3} & t^{4} & t^{5}\\t^{3} & t^{4} & t^{5} & t^{6} \end{bmatrix} dt = \frac{1}{420} \begin{bmatrix} 420 & 210 & 140 & 105\\210 & 140 & 105 & 84\\140 & 105 & 84 & 70\\105 & 84 & 70 & 60 \end{bmatrix}.$$

Следует заметить, что $T_0 = T_0^{T}$ – симметричная матрица. Тогда

$$\int_{x_{i}}^{x_{i+1}} \left(\frac{d^{p} y}{dx^{p}}\right)^{2} (x) dx = \frac{1}{h_{i}^{2p-1}} ((S^{p})^{\mathrm{T}} \overline{a}^{i}, T_{0} (S^{p})^{\mathrm{T}} \overline{a}^{i}) = \frac{1}{h_{i}^{2p-1}} (S^{p} T_{0} (S^{p})^{\mathrm{T}} \overline{a}^{i}, \overline{a}^{i}) =$$
$$= \frac{1}{h_{i}^{2p-1}} (D_{i} A^{\mathrm{T}} S^{p} T_{0} (S^{p})^{\mathrm{T}} A D_{i} \overline{y}^{i}, \overline{y}^{i}) = (K_{p}^{i} \overline{y}^{i}, \overline{y}^{i}),$$

где

$$K_{p}^{i} = \frac{1}{h_{i}^{2p-1}} D_{i} A^{\mathrm{T}} S^{p} T_{0} (S^{p})^{\mathrm{T}} A D_{i}$$
(4.121)

При p = 0

$$K_0^i = h_i D_i A^{\mathrm{T}} T_0 A D_i \tag{4.122}$$

При *p* = 2

$$K_{2}^{i} = \frac{1}{h_{i}^{3}} D_{i} A^{\mathrm{T}} S^{2} T_{0} (S^{2})^{\mathrm{T}} A D_{i}$$
(4.123)

Таким образом
$$\int_{x_i}^{x_{i+1}} (EJ(y'')^2 + \beta y^2) dx = (K^i \overline{y}^i, \overline{y}^i),$$
где
$$K^i = EJ \cdot K_2^i + \beta \cdot K_0^i$$
(4.124)

где

– локальная матрица жесткости.

Построение локального вектора нагрузки на *i*-ом элементе.

С учетом представленных выше локальных построений вычислим линейную часть функционала Φ_i :

$$\int_{x_i}^{x_{i+1}} qy dx \tag{4.125}$$

Рассмотрим в общем случае $\int_{x_i}^{x_{i+1}} F(x) \left(\frac{d^p y}{dx^p} \right)(x) dx$, p = 0, 1, 2, 3.

Полагаем, что $F(x) = F_i$, например, $F_i = F\left(\frac{x_i + x_{i+1}}{2}\right)$. Тогда

$$\begin{split} &\int_{x_{i}}^{x_{i+1}} F(x) \left(\frac{d^{p} y}{dx^{p}} \right) (x) dx = F_{i} \int_{x_{i}}^{x_{i+1}} \left(\frac{d^{p} y}{dx^{p}} \right) (x) dx = F_{i} \frac{h_{i}}{h_{i}^{p}} ((S^{p})^{\mathrm{T}} \overline{a}^{i})^{\mathrm{T}} \int_{0}^{1} \overline{t} dt = \\ &= F_{i} \frac{h_{i}}{h_{i}^{p}} ((S^{p})^{\mathrm{T}} \overline{a}^{i})^{\mathrm{T}} \overline{t}_{0} = \frac{F_{i}}{h_{i}^{p-1}} ((S^{p})^{\mathrm{T}} \overline{a}^{i}, \overline{t}_{0}) = \frac{F_{i}}{h_{i}^{p-1}} ((S^{p})^{\mathrm{T}} A D_{i} \overline{y}^{i}, \overline{t}_{0}) = \\ &= \frac{F_{i}}{h_{i}^{p-1}} (\overline{y}^{i}, D_{i} A^{\mathrm{T}} S^{p} \overline{t}_{0}) = (\overline{R}_{p}^{i}, \overline{y}^{i}), \text{ где } \overline{t}_{0} = \int_{0}^{1} \overline{t} dt = \int_{0}^{1} \left[\frac{1}{t} t \\ t^{2} \\ t^{3} \end{bmatrix} dt = \begin{bmatrix} 1 \\ 1/2 \\ 1/3 \\ 1/4 \end{bmatrix} \end{split}$$

$$\overline{R}_{p}^{i} = \frac{F_{i}}{h_{i}^{p-1}} D_{i} A^{\mathrm{T}} S^{p} \overline{t}_{0}, \ p = 0, 1, 2, 3$$
(4.126)

При p = 0:

$$\overline{R}_0^i = h_i F_i D_i A^{\mathrm{T}} \overline{t}_0 \tag{4.127}$$

Таким образом,

$$\int_{x_i}^{x_{i+1}} qy dx = (\overline{R}^i, \overline{y}^i),$$

где

$$\overline{R}^{i} = h_{i}q_{i}D_{i}A^{\mathrm{T}}\overline{t}_{0} \tag{4.128}$$

– локальный вектор нагрузки.

Построение глобальной матрицы жесткости и вектора нагрузки разрешающей системы.

Общий функционал, представляющий сумму функционалов по элементам, с учетом представленных выше локальных построений примет вид

$$\Phi_h(\bar{y}) = \frac{1}{2} \sum_{i=1}^{n-1} (K^i \bar{y}^i, \bar{y}^i) - \sum_{i=1}^{n-1} (\bar{R}^i, \bar{y}^i), \qquad (4.129)$$

где $\bar{y} = [y_1 \ y'_1 \ y_2 \ y'_2 \ \dots \ y_{n-1} \ y'_{n-1} \ y_n \ y'_n]^{\mathrm{T}}$ – вектор узловых неизвестных.

Объединяя коэффициенты локальных матриц жесткости и компоненты локальных векторов нагрузок, относящихся к общим узловым значениям, получим

$$\Phi_h(\bar{y}) = \frac{1}{2} (K\bar{y}, \bar{y}) - (\bar{R}, \bar{y}), \qquad (4.130)$$

где матрица K называется глобальной матрицей жесткости, а вектор \overline{R} – глобальным вектором нагрузки.

Схематично формирование элементов матрицы К представлено на рис. 4.6.

$K_{33}^{i-1} + K_{11}^{i}$	$K_{34}^{i-1} + K_{12}^{i}$	<i>K</i> ^{<i>i</i>} ₁₃	K_{14}^i		
$K_{43}^{i-1} + K_{21}^{i}$	$K_{44}^{i-1} + K_{22}^{i}$	K ^{<i>i</i>} ₂₃	K ^{<i>i</i>} ₂₄		
K_{31}^{i}	K_{32}^{i}	$K_{33}^{i} + K_{11}^{i+1}$	$K_{34}^{i} + K_{12}^{i+1}$	K_{13}^{i+1}	K_{14}^{i+1}
K^i_{41}	K_{42}^i	$K^{i}_{43} + K^{i+1}_{21}$	$K_{44}^{i} + K_{22}^{i+1}$	K_{23}^{i+1}	K_{24}^{i+1}
		K_{31}^{i+1}	K_{32}^{i+1}	$K_{33}^{i+1} + K_{11}^{i+2}$	$K_{34}^{i+1} + K_{12}^{i+2}$
		K_{41}^{i+1}	K_{42}^{i+1}	$K_{43}^{i+1} + K_{21}^{i+2}$	$K_{44}^{i+1} + K_{22}^{i+2}$

Рис. 4.6. К формированию глобальной матрицы жесткости

Замечания к рисунку 4.6.

1. K_{pq}^m – элементы локальной матрицы жесткости на *m* -ом элементе: m=1,...,n-1, p,q=1,2,3,4.

- 2. При i = 1 $K_{33}^{i-1} = K_{34}^{i-1} = K_{43}^{i-1} = K_{44}^{i-1} = 0$
- 3. При i = n 1 $K_{pq}^{i+1} = 0$, p, q = 1, 2, 3, 4
- 4. При i > n-3 $K_{11}^{i+2} = K_{12}^{i+2} = K_{21}^{i+2} = K_{22}^{i+2} = 0$

5. Представленный фрагмент матрицы K отображает коэффициенты при узловых неизвестных y_i , y'_i , y_{i+1} , y'_{i+1} и частично y_{i+2} , y'_{i+2} .

Схематично формирование элементов вектора \overline{R} представлено на рисунке 4.

$$R_{3}^{i-1} + R_{1}^{i}$$

$$R_{4}^{i-1} + R_{2}^{i}$$

$$R_{3}^{i} + R_{1}^{i+1}$$

$$R_{4}^{i} + R_{1}^{i+1}$$

$$R_{4}^{i} + R_{2}^{i+1}$$

Рис. 4.7. К формированию глобального вектора нагрузки

Замечания к рисунку 4.7.

1. R_p^m – элементы локального вектора нагрузки на *m* -ом элементе: m=1,...,n-1, p=1,2,3,4.

- 2. При i = 1 $R_3^{i-1} = R_4^{i-1} = 0$.
- 3. При i = n 1 $R_1^{i+1} = R_2^{i+1} = 0$.

4. Представленный фрагмент вектора \overline{R} соответствует в линейной части функционала узловым неизвестным $y_i, y'_i, y_{i+1}, y'_{i+1}$.

Учет закреплений.

Пусть для некоторого узла с номером p, $1 \le p \le n$ задано условие

$$y_p = 0.$$
 (4.131)

Этому номеру соответствует порядковый номер неизвестной y_p :

$$k = 1 + 2 \cdot (p - 1). \tag{4.132}$$

Тогда для выполнения условия (4.131) следует приравнять нулю строку и столбец глобальной матрицы, имеющих номер *k*, на главной диагонали вставить единицу, кроме того, обнулить *k*-ю компоненту глобального вектора нагрузки:

$$K_{kj} = K_{jk} = 0, \ j = 1,...,2n, \ K_{kk} = 1, \ R_k = 0.$$
 (4.133)

Если задано условие

$$y'_p = 0.$$
 (4.134)

Тогда порядковый номер неизвестной y'_p имеет вид:

$$k = 2 \cdot p \,. \tag{4.135}$$

Для выполнения условия (4.134) требуется произвести аналогичную предыдущему случаю коррекцию глобальной матрицы и глобального вектора нагрузки (см. формулы (4.133), где порядковый номер k неизвестной y'_p представлен формулой (4.135)).

Учет краевых условий исходной постановки.

$$EJy''(0) = -M_0$$

$$EJy'''(0) = P_0$$

$$EJy''(l) = -M_l$$

$$EJy'''(l) = P_l$$

$$(4.136)$$

Как следует из формулы (4.110) поперечные силы P_0 и P_l относятся к линейной части функционала и соответствуют узловым неизвестным y_1 и y_n , изгибающие моменты M_0 и M_l также относятся к линейной части функционала и соответствуют узловым неизвестным y'_1 и y'_n , следовательно, для их учета требуется коррекция глобального вектора нагрузки в виде:

$$\widetilde{R}_{i} = \begin{cases} R_{1} + P_{0}, & i = 1 \\ R_{2} + M_{0}, & i = 2 \\ R_{i}, & 2 < i < 2n - 1 , \\ R_{2n-1} + P_{i}, & i = 2n - 1 \\ R_{2n} + M_{i}, & i = 2n \end{cases}$$

$$(4.137)$$

Таким образом, решение исходной задачи методом конечных элементов сводится к решению системы линейных алгебраических уравнений относительно узловых неизвестных:

$$K\overline{y} = \widetilde{R} . \tag{4.138}$$

Пример расчета.

В качестве модельного примера рассмотрим балку на упругом основании со следующими параметрами: $q(x) = P\delta(x - \frac{L}{2})$, P = 100 кH – нагрузка, заданная в средней точке (см. рис. 5.); L=8 м, $h_b=1.3$ м, $b_b=1$ м; $E = 2560 \cdot 10^4$ кH/м²; $k = 75 \cdot 10^3$ кH/м³.

Рис. 4.8. К постановке рассматриваемой краевой задачи

При этом будем рассматривать следующие краевые условия:

1.
$$\begin{cases} y(0) = y''(0) = 0\\ y(L) = y''(L) = 0 \end{cases}$$
 - балка, шарнирно опертая с двух сторон,
2.
$$\begin{cases} y(0) = y'(0) = 0\\ y(L) = y'(L) = 0 \end{cases}$$
 - балка жестко закреплена с двух сторон,

3. $\begin{cases} y(0) = y''(0) = 0 \\ y'''(L) = y''(L) = 0 \end{cases}$ – балка, шарнирно опертая слева, правый конец

свободный,

4. $\begin{cases} y(0) = y'(0) = 0 \\ y'''(L) = y''(L) = 0 \end{cases}$ – балка жестко закреплена слева, правый конец

свободный.

Отметим, что в этом случае

$$M_0 = P_0 = M_L = P_L = 0, \qquad \int_0^L qy dx = \int_0^L P\delta(x - \frac{L}{2})y(x) dx = P \cdot y\left(\frac{L}{2}\right).$$

Поскольку нагрузка задана в средней точке, т.е. в среднем узле, следовательно, количество узлов должно быть нечетным. Тогда номер среднего узла $i_s = \frac{n+1}{2}$.

Порядковый номер узлового неизвестного $y_{i_s} = y\left(\frac{L}{2}\right)$, которому соответствует

узловая нагрузка P, $i = 1 + 2(i_s - 1) = 1 + 2(\frac{n+1}{2} - 1) = n$. Следовательно,

глобальный вектор нагрузки может быть сформирован без локальных построений, т.е.

$$R_{i} = \begin{cases} 0, & 1 \le i < n \\ P, & i = n \\ 0, & n < i \le 2n \end{cases}$$
(4.139)

Пример текста М-функции

```
function beam_FEM_cub
% ввод,задание и формирование исходных данных
L=input('ввести длину балки L=');
hb=input('ввести высоту поперечного сечения hb=');
bb=input('ввести ширину поперечного сечения bb=');
Eb=input('ввести модуль упругости Eb=');
kb=input('ввести коэффициент отпора грунта kb=');
```

bt=kb*bb; J=bb*hb^3/12; EJ=Eb*J; n=input('ввести число точек n='); ne=n-1; %количество элементов h=L/ne; % длина элемента mp=2; %число неизвестных в узле: у(хі),у'(хі) me=2*mp;%число неизвестных на элементе: y(x i),y'(x i),y(x i+1),y'(x i+1) ns=mp*n; %общее количество неизвестных Pf=input('ввести параметр нагрузки Pf='); xi=(0:h:L)'; % координаты узлов bnd str=sprintf('%s\n','1 $y(0) = 0, y''(0) = 0; y(L) = 0, y''(L) = 0', \dots$ '2 - y(0)=0, y''(0)=0; y(L)=0, y''(L)=0',... $'3 - y(0) = 0, y''(0) = 0; y''(L) = 0, y'''(L) = 0', \dots$ '4 - y(0) = 0, y''(0) = 0; y''(L) = 0, y'''(L) = 0');fprintf('\nввести номер условий граничных bnd cond:\n%s\n',bnd str) bnd cond=input('bnd cond='); % формирование вспомогательных матриц и векторов Ag=[1 0 0 0;0 1 0 0;1 1 1 1;0 1 2 3] A=inv(Aq) S=diag([1 2 3]',-1) TO=[1 1/2 1/3 1/4 1/2 1/3 1/4 1/5 1/3 1/4 1/5 1/6 1/4 1/5 1/6 1/7] TT=420*T0 Di=diag([1 h 1 h]') t0=[1 1/2 1/3 1/4]' % формирование локальных матриц и векторов KO=h*Di*A'*TO*A*Di

K2=1/h^3*Di*A'*S^2*T0*(S^2)'*A*Di

```
Ke=EJ*K2+bt*K0 %локальная матрица жесткости
        R0=h*Di*A'*t0 %локальный вектор нагрузки
% формирование глобальной матрицы жесткости
        Kg=zeros(ns);
        for i=1:mp:ns-mp-1
            Kg(i:i+me-1,i:i+me-1)=Kg(i:i+me-1,i:i+me-1)+Ke(:,:);
        end
% формирование глобального вектора нагрузки
        Rg=zeros(ns,1);
        Rg(ns/2) = Pf;
% учет граничных условий
        if bnd cond==1
            Kg(1,:)=0;Kg(:,1)=0;Kg(ns-1,:)=0;Kg(:,ns-1)=0;
            Kg(1,1)=1;Kg(ns-1,ns-1)=1;
        elseif bnd cond==2
            Kg(1:2,:)=0;Kg(:,1:2)=0;Kg(ns-1:ns,:)=0;Kg(:,ns-1:ns)=0;
            Kg(1,1)=1;Kg(2,2)=1;Kg(ns-1,ns-1)=1;Kg(ns,ns)=1;
        elseif bnd cond==3
            Kq(1,:) = 0; Kq(:,1) = 0;
            Kg(1, 1) = 1;
        else bnd cond==4
            Kg(1:2,:)=0;Kg(:,1:2)=0;
            Kg(1,1)=1;Kg(2,2)=1;
        end
%Kg
%Rg
U=Kg \setminus Rg;
yi=U(1:mp:ns);
dyi=U(2:mp:ns);
for i=1:ne
    xs(i) = h^{*}(i-0.5);
    d2y(i)=df(i,2,0.5);
    d3y(i)=df(i,3,0.5);
end
```

```
figure()

plot(xi,yi),grid on,title('progib Y')

figure()

plot(xi,dyi),grid on,title('ugol dY')

figure()

plot(xs,-EJ*d2y),grid on,title('moment -EJ*d2Y')

figure()

plot(xs,-EJ*d3y),grid on,title('poperechnaja sila -EJ*d3Y')

function dpyi=df(i,p,t)

% вычисление dpy в точке t на i-м элементе

Dp=(S^p)'*A*Di;

ti=[1;t;t^2;t^3];

in=1+mp*(i-1);ik=in+me-1; z=U(in:ik);

dpyi=dot(Dp*z,ti)/h^p;

end
```

end

1. Краевые условия

 $\begin{cases} y(0) = y''(0) = 0 \\ y(L) = y''(L) = 0 \end{cases}$ – балка, шарнирно опертая с двух сторон

Результаты счета

ввести длину балки L=8 ввести высоту поперечного сечения hb=1.3 ввести ширину поперечного сечения bb=1 ввести модуль упругости Eb=2560e4 ввести коэффициент отпора грунта kb=75e3 ввести число точек n=81 ввести параметр нагрузки Pf=100 ввести номер граничных условий bnd_cond:

progib Y

0 x 10⁻⁴

0.2

0.4

0.6

0.8

1.2

1.4 L-0

-5 <mark>x 10⁻⁵</mark>

-4 -3 -2 -1

0

ugol dY

2. Краевые условия

 $\begin{cases} y(0) = y'(0) = 0 \\ y(L) = y'(L) = 0 \end{cases}$ – балка жестко закреплена с двух сторон

Результаты счета

ввести длину балки L=8 ввести высоту поперечного сечения hb=1.3 ввести ширину поперечного сечения bb=1 ввести модуль упругости Eb=2560e4

$$1$$

0 x 10⁻⁵ progib Y

3. Краевые условия

 $\begin{cases} y(0) = y''(0) = 0 \\ y'''(L) = y''(L) = 0 \end{cases}$ – балка, шарнирно опертая слева, правый конец свободный

Результаты счета

ввести длину балки L=8 ввести высоту поперечного сечения hb=1.3 ввести ширину поперечного сечения bb=1 ввести модуль упругости Eb=2560e4

bnd_cond=3

4. Краевые условия

 $\begin{cases} y(0) = y'(0) = 0 \\ y'''(L) = y''(L) = 0 \end{cases}$ – балка жестко закреплена слева, правый конец свободный

Результаты счета

ввести длину балки L=8 ввести высоту поперечного сечения hb=1.3 ввести ширину поперечного сечения bb=1 ввести модуль упругости Eb=2560e4

$bnd_cond=4$

Функции формы.

Неизвестная функция прогиба на *i* -ом элементе представлена в виде кубической параболы

$$y(x) = v_i(t), \quad x_i \le x \le x_{i+1}$$

где

$$t = \frac{x - x_i}{h_i}$$
 – локальные координаты, при этом

$$\begin{cases} x = x_i \Longrightarrow t = 0\\ x = x_{i+1} \Longrightarrow t = 1 \end{cases}, \quad \frac{d}{dx} = \frac{d}{dt} \cdot \frac{dt}{dx} = \frac{1}{h_i} \frac{d}{dt} \quad \text{или} \quad \frac{d}{dt} = h_i \frac{d}{dx} \\ v_i(t) = a_0 + a_1 t + a_2 t^2 + a_3 t^3, \quad 0 \le t \le 1. \end{cases}$$

Для определения 4-х параметров a_0 , a_1 , a_2 , a_3 потребуем, чтобы в узлах x_i (t=0) и x_{i+1} (t=1) значения $v_i(t)$ и $\frac{dv_i}{dt}$ совпадали с узловыми значениями y(x)и $h_i \frac{dy(x)}{dx}$, соответственно:

$$v_i(0) = y_i, \quad \frac{dv_i}{dt}(0) = h_i y'_i, \quad v_i(1) = y_{i+1}, \quad \frac{dv_i}{dt}(1) = h_i y'_{i+1},$$

Поскольку $\frac{dv_i}{dt}(t) = a_1 + 2a_2t + 3a_3t^2$, получаем следующую систему линейных

алгебраических уравнений относительно параметров a_0 , a_1 , a_2 , a_3 :

$$\begin{cases} a_0 = y_i \\ a_1 = h_i y'_i \\ a_0 + a_1 + a_2 + a_3 = y_{i+1} \\ a_1 + 2a_2 + 3a_3 = h_i y'_{i+1} \end{cases}$$
или $A_{\Gamma} \overline{a}^i = D_i \overline{y}^i$, где
 $\begin{bmatrix} a_0 \end{bmatrix}$ $\begin{bmatrix} y_i \end{bmatrix}$ $\begin{bmatrix} 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$

$$\overline{a}^{i} = \begin{bmatrix} a_{1} \\ a_{2} \\ a_{3} \end{bmatrix}, \quad \overline{y}^{i} = \begin{bmatrix} y'_{i} \\ y_{i+1} \\ y'_{i+1} \end{bmatrix}, \quad D_{i} = \begin{bmatrix} h_{i} \\ 1 \\ h_{i} \end{bmatrix}, \quad A_{\Gamma} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{bmatrix}.$$

0

Следовательно

$$\overline{a}^i = A_{\Gamma}^{-1} D_i \overline{y}^i$$

Легко проверить, что

$$A_{\Gamma}^{-1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & -2 & 3 & -1 \\ 2 & 1 & -2 & 1 \end{bmatrix}$$

Тогда

 $v_i(t) =$

$$\begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -3 & -2 & 3 & -1 \\ 2 & 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} y_i \\ h_i y'_i \\ y_{i+1} \\ h_i y'_{i+1} \end{bmatrix} = \begin{bmatrix} y_i \\ h_i y'_i \\ -3y_i - 2h_i y'_i + 3y_{i+1} - h_i y'_{i+1} \\ 2y_i + h_i y'_i - 2y_{i+1} + h_i y'_{i+1} \end{bmatrix}$$

Таким образом, функцию $v_i(t)$ можно представить в следующем виде

$$= y_{i} + h_{i} y_{i}' \cdot t + (-3y_{i} - 2h_{i} y_{i}' + 3y_{i+1} - h_{i} y_{i+1}')t^{2} + (2y_{i} + h_{i} y_{i}' - 2y_{i+1} + h_{i} y_{i+1}')t^{3} =$$

$$= y_{i} (1 - 3t^{2} + 2t^{3}) + h_{i} y_{i}' (t - 2t^{2} + t^{3}) + y_{i+1} (3t^{2} - 2t^{3}) + h_{i} y_{i+1}' (-t^{2} + t^{3}) =$$

$$= y_{i} \psi_{1}(t) + h_{i} y_{i}' \psi_{2}(t) + y_{i+1} \psi_{3}(t) + h_{i} y_{i+1}' \psi_{4}(t),$$

где

 $\psi_1(t) = 1 - 3t^2 + 2t^3, \ \psi_2(t) = t - 2t^2 + t^3, \ \psi_3(t) = 3t^2 - 2t^3, \ \psi_4(t) = -t^2 + t^3 - функции формы.$

Воспользуемся возможностями Матлаб и представим функции формы и их производные графически:

```
figure()
hold on
fplot('1-3*t^2+2*t^3',[0,1],'k')
fplot('t-2*t^2+t^3',[0,1],'r')
fplot('3*t^2-2*t^3',[0,1],'b')
fplot('-t^2+t^3',[0,1],'g')
```

```
grid on
legend('psi_1','psi_2','psi_3','psi_4')
title('functions of form')
figure()
hold on
fplot('-6*t+6*t^2',[0,1],'k')
fplot('1-4*t+3*t^2',[0,1],'r')
fplot('6*t-6*t^2',[0,1],'r')
fplot('-2*t+3*t^2',[0,1],'g')
grid on
legend('dpsi_1','dpsi_2','dpsi_3','dpsi_4')
title(' derived functions of form')
```


Пример численного решения задачи об изгибе балки на упругом основании.

Рассмотри решение задачи со следующими исходными данными:

- 1. Построить локальные векторы нагрузки.
- 2. Построить локальные матрицы жесткости.
- 3. Получить численное решение и построить графики при n = 21.

Варианты задания.

 $EJ(x) = c_1 = 1$ - жесткость балки;

 $\beta(x) = 100 -$ коэффициент упругости основания (коэффициент постели);

 $q(x) = c\beta(x)x(\ell - x)$ – внешняя нагрузка;

 $M_0 = 2cc_1$, $M_\ell = -M_0 -$ сосредоточенные изгибающие моменты на краях балки;

 $P_0 = 0$, $P_{\ell} = 0$ – сосредоточенные силы на краях балки;

 $\ell = 1 - длина балки.$

При этом

 $c = 4(g+s)/100/\ell^2;$ g – номер группы; s – номер студента по журналу.

Пример М-файла

```
function beam FEM cubic
% ввод, задание и формирование исходных данных
        s=input('ввести номер варианта(номер студента по списку)s=');
       g=input('ввести номер группы g=');
       L=1;
       c=4*(s+g)/100/L^2;
       c1=1;
       EJ=c1;
       bt=100;
        n=input('ввести число точек n=');
        ne=n-1; %количество элементов
        h=L/ne; % длина элемента
        xs=h/2:h:L; %массив координат средних точек элементов
        q=c*bt*xs.*(L-xs); %массив нагрузок в средних точках элементов
        P0=0; M0=2*c*c1; % краевые условия слева: x=0
        PL=0; ML=-M0; % краевые условия справа: x=L
       mp=2; %число неизвестных в узле: у(xi), у'(xi)
       me=2*mp;%число неизвестных на элементе: y(x_i),y'(x_i),y(x_i+1),y'(x_i+1)
        ns=mp*n; %общее количество неизвестных
       xi=0:h:L; % координаты узлов
 % формирование вспомогательных матриц и векторов
        Ag=[1 0 0 0;0 1 0 0;1 1 1 1;0 1 2 3]
       A=inv(Aq)
        S=diag([1 2 3]',-1)
        TO=[ 1 1/2 1/3 1/4
           1/2 1/3 1/4 1/5
           1/3 1/4 1/5 1/6
           1/4 1/5 1/6 1/7]
        TT=420*T0
        Di=diag([1 h 1 h]')
        t0=[1 1/2 1/3 1/4]'
% формирование локальных матриц и векторов
```

```
KO=h*Di*A'*TO*A*Di
```

```
K2=1/h^3*Di*A'*S^2*T0*(S^2)'*A*Di
        Ke=EJ*K2+bt*K0 %локальная матрица жесткости
        R0=h*Di*A'*t0 %локальный вектор нагрузки
% формирование глобальной матрицы жесткости
        Kg=zeros(ns);
        for i=1:mp:ns-mp-1
            Kg(i:i+me-1,i:i+me-1)=Kg(i:i+me-1,i:i+me-1)+Ke(:,:);
        end
% формирование глобального вектора нагрузки
        Rg=zeros(ns,1);
        ie=0;
        for i=1:mp:ns-mp-1
            ie=ie+1;
            Rg(i:i+me-1) = Rg(i:i+me-1) + q(ie) * R0(:);
        end
% учет граничных условий
        Rg(1)=Rg(1)+P0;
        Rg(2) = Rg(2) + M0;
        Rg(ns-1)=Rg(ns-1)+PL;
        Rg(ns) = Rg(ns) + ML;
%Kq
%Rg
U=Kg \setminus Rg;
yi=U(1:mp:ns)';
dyi=U(2:mp:ns)';
% вычисление у, у', у" и у"' в центрах элементов
for i=1:ne
    ys(i)=df(i,0,0.5);
    dy(i)=df(i,1,0.5);
    d2y(i) = df(i, 2, 0.5);
    d3y(i)=df(i,3,0.5);
end
% вычисление у" и у"' в узлах
for i=1:ne
    d2yi(i)=df(i,2,0);
    d3yi(i)=df(i,3,0);
end
    d2yi(n)=df(ne,2,1);
    d3yi(n)=df(ne,3,1);
disp('прогиб балки'), disp(yi)
```

```
disp('угол поворота'),disp(dyi)
disp('изгибающий момент'),disp(-EJ*d2yi)
disp('поперечная сила'),disp(-EJ*d3yi)
figure(),plot(xs,ys,xs,dy,xs,-EJ*d2y,xs,-EJ*d3y),title('v centrah elementov'),grid
on
legend('y','dy','M=-EJ*d2y','Q=-EJ*d3y')
figure(),plot(xi,yi,xi,dyi,xi,-EJ*d2yi,xi,-EJ*d3yi),title('v uzlah'),grid on
legend('y','dy','M=-EJ*d2y','Q=-EJ*d3y')
function dpyi=df(i,p,t)
% вычисление dpy в точке t на i-м элементе
Dp=(S^p)'*A*Di;
ti=[1;t;t^2;t^3];
in=1+mp*(i-1);ik=in+me-1; z=U(in:ik);
dpyi=dot(Dp*z,ti)/h^p;
end
```

end

Результаты счета при g=3 и s=12

```
ввести номер варианта (номер студента по списку) s=12
ввести номер группы q=3
ввести число точек n=21
Ag =
      1
                    0
                           0
             0
      0
             1
                    0
                           0
             1
      1
                    1
                           1
      0
             1
                    2
                           3
A =
      1
             0
                    0
                           0
      0
             1
                    0
                           0
    -3
            -2
                    3
                          -1
      2
             1
                   -2
                           1
S =
      0
             0
                    0
                           0
      1
             0
                    0
                           0
      0
             2
                    0
                           0
      0
             0
                    3
                           0
то =
```

	1.000	0	0.5000	0.3333	0.2500
	0.500	0	0.3333	0.2500	0.2000
	0.333	3	0.2500	0.2000	0.1667
	0.2500		0.2000	0.1667	0.1429
TT =	=				
4	420	210	140	105	
2	210	140	105	84	
-	140	105	84	70	
-	105	84	70	60	
Di =	=				
	1.000	0	0	0	0
		0	0.0500	0	0
		0	0	1.0000	0
		0	0	0	0.0500
t0 =	=				
	1.000	0			
	0.500	0			
	0.333	3			
	0.250	0			
K0 =	=				
	0.018	6	0.0001	0.0064	-0.0001
	0.000	1	0.0000	0.0001	-0.0000
	0.006	4	0.0001	0.0186	-0.0001
-	-0.000	1	-0.0000	-0.0001	0.0000
K2 =	=				
1	.0e+00	4 *			
	9.600	0	0.2400	-9.6000	0.2400
	0.240	0	0.0080	-0.2400	0.0040
-	-9.600	0	-0.2400	9.6000	-0.2400
	0.240	0	0.0040	-0.2400	0.0080
Ke =	=				
1	.0e+00	4 *			
	9.600	2	0.2400	-9.5999	0.2400
	0.240	0	0.0080	-0.2400	0.0040
-	-9.599	9	-0.2400	9.6002	-0.2400
	0.240	0	0.0040	-0.2400	0.0080

R0 -						
0.025	0					
0.000	2					
0.025	0					
-0.000	2					
прогиб ба	лки					
0.000	3 0.0	288 0.	.0542	0.0767	0.0961	0.1126
0.1261	0.1366	0.1440	0.1485	0.1500	0.1485	0.1440
0.1366	0.1261	0.1126	0.0961	0.0767	0.0542	0.0288
0.0003						
угол повој	рота					
0.599	1 0.5	391 0.	.4792	0.4192	0.3593	0.2994
0.2395	0.1796	0.1197	0.0599	-0.0000	-0.0599	-0.1197
-0.1796	-0.2395	-0.2994	-0.3593	-0.4192	-0.4792	-0.5391
-0.5991						
изгибающи	й момент					
1.200	1 1.1	995 1.	.1990	1.1986	1.1983	1.1980
1.1978	1.1977	1.1975	1.1975	1.1975	1.1975	1.1975
1.1976	1.1978	1.1979	1.1982	1.1985	1.1989	1.1994
1.2001						
поперечна	я сила					
-0.013	8 -0.01	17 -0.00	0.	0080 -0.	0064 -0.	0050 -
0.0038	-0.0026	-0.0015	-0.0005	0.0005	0.0015	0.0026
0.0038	0.0050	0.0064	0.0080	0.0097	0.0117	0.0138

0.0138

R0 =

Решение задачи с использованием стандартного решателя bvp4c. Чтобы воспользоваться стандартным решателем bvp4c, представляем исходную задачу в виде системы дифференциальных уравнений 1-го порядка

$$\begin{cases} \overline{z}' = \overline{F}(x, \overline{z}), & 0 < x < L \\ \\ \overline{z}_{bc} = \begin{bmatrix} \overline{z}(0) \\ \\ \overline{z}(L) \end{bmatrix} = 0 - краевые условия \end{cases}$$

,

где

$$\bar{z}(x) = \begin{bmatrix} z_1(x) \\ z_2(x) \\ z_3(x) \\ z_4(x) \end{bmatrix}, \quad z_1 = y, \quad z_2 = y', \quad z_3 = y'', \quad z_4 = y''',$$

$$\bar{z}(0) = \begin{bmatrix} EJz_3(0) + M_0 \\ EJz_4(0) - P_0 \end{bmatrix}, \quad \bar{z}(L) = \begin{bmatrix} EJz_3(L) + M_L \\ EJz_4(L) - P_L \end{bmatrix}, \ \bar{F}(x,\bar{z}) = \begin{bmatrix} z_2 \\ z_3 \\ z_4 \\ -\beta z_1 + q(x) \end{bmatrix}$$

Пример соответствующего М-файла

disp('pemeнue краевой задачи о поперечном изгибе балки Бернулли: функция bvp4c'); %----- пример краевой задачи ------%d4y+beta*y=q, 0<x<L, q=q(x)=c*bt*x*(L-x) % краевые условия %EJd2y(0)=-M0 %EJd3y(0)=P0 %EJd3y(L)=-ML %EJd3y(L)=PL

% представляем в виде системы дифф.уравнений 1-го порядка % z(1)'= z(2) % z(2)'= z(3) % z(3)'= z(4) % z(4)'=-beta*z(1)+q % краевые условия % za(3)=0 % za(4)=0 % zb(3)=0

```
% zb(4)=0
% ввод, задание и формирование исходных данных
s=input('ввести номер варианта(номер студента по списку)s=');
g=input('ввести номер группы g=');
L=1;
c=4*(s+q)/100/L^{2};
c1=1;
EJ=c1;
bt=100;
P0=0; M0=2*c*c1; % краевые условия слева: x=0
PL=0; ML=M0; % краевые условия справа: x=L
n=input('ввести начальное количество точек n=');
h=L/(n-1);
xq=[0 L];
yg=input('ввести вектор начальных значений неизвестных функций
yq = [y, ..., d(m-1)y] = ');
solinit = bvpinit(linspace(xg(1), xg(2), n), yg);
ode1=@(x,z)[z(2);z(3);z(4);-bt*z(1)+c*bt*x*(L-x)];
bc1=@(za,zb)[za(3)+M0;za(4)-P0;zb(3)+ML;zb(4)-PL];
sol = bvp4c(ode1, bc1, solinit);
x = \text{linspace}(xq(1), xq(2), n);
y = deval(sol, x);
disp('прогиб Y'), disp(y(1,:))
disp('угол поворота dY'), disp(y(2,:))
disp('moment M=-EJ*d3Y'), disp(-EJ*y(3,:))
disp('поперечная сила Q=-EJ*d3Y'), disp(-EJ*y(4,:))
%figure(),plot(x,y(1,:)),grid on, legend('y');
%figure(),plot(x,y(2,:)),grid on, legend('dy');
%figure(),plot(x,-EJ*y(3,:)),grid on, legend('-EJ*d2y');
%figure(),plot(x,-EJ*y(4,:)),grid on, legend('-EJ*d3y');
%figure()
plot(x, y(1, :), x, y(2, :), x, -EJ^*y(3, :), x, -EJ^*y(4, :))
grid on
```

legend('y','dy','M=-EJ*d2y','Q=-EJ*d3y')

Результаты счета

решение краевой задачи о поперечном изгибе балки Бернулли: функция bvp4c ввести номер варианта (номер студента по списку) s=12 ввести номер группы д=3 ввести начальное количество точек n=9 ввести вектор начальных значений неизвестных функций yq=[y,...,d(m- $1)_{V} = [0 \ 0 \ 0 \ 0]$ прогиб Ү 0.0000 0.0656 0.1125 0.1406 0.1500 0.1406 0.1125 0.0656 0.0000 угол поворота dY 0.6000 0.4500 0.3000 0.1500 0.0000 -0.1500 -0.3000 -0.4500 -0.6000 момент М=-ЕЈ*dЗҮ 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 поперечная сила Q=-EJ*d3Y 1.0e-005 * 0 0.1854 0.2084 0.1272 -0.0014 -0.1292 -0.2070 -0.1829 0

Тема 5.

Аналитический метод вычисления геометрических характеристик поперечных сечений элементов конструкций

При реализации предлагаемого метода абсолютно не требуется разбивка рассматриваемого сечения на многочисленные (и вообще какие-либо) составные части. Результат эффективно получается на основе использования аппарата обобщенных функций, а также применения точного интегрирования по формулам Симпсона и свойств скалярных произведений.

Предварительные сведения.

Существует два подхода к выводу окончательных формул:

- первый (более стандартный) метод контурных интегралов;
- второй (более содержательный) состоит в использовании понятия обобщенных функций и характеристической функции области.

Рассмотрим второй подход.

Пусть задана некоторая область Ω (рис. 5.1).

Рис. 5.1. Рассматриваемая область и основные обозначения

Введем следующие обозначения:

$$\partial \Omega = \Gamma = \{ (x, y) : P(x, y) = 0 \}, P(x, y) = 0$$
(5.1)

- уравнение границы области Ω;

$$\theta(x, y) = \begin{cases} 1 & (x, y) \in \Omega \\ 0 & (x, y) \notin \Omega \end{cases}$$
(5.2)

- характеристическая функция области Ω;

$$v = (v_x, v_y); \quad \begin{cases} v_x = \cos(v, x) = \cos\alpha \\ v_y = \cos(v, y) = \cos\beta \end{cases}$$
(5.3)

– вектор внутренней нормали к границе и его компоненты.

Пусть dx, dy, $d\Gamma$ – соответственно дифференциалы по оси x, y и касательной к границе. Тогда из геометрических соображений получим

$$dx = \cos(v, y)d\Gamma; \quad dy = -\cos(v, x)d\Gamma.$$
(5.4)

Из теории обобщенных функций известно, что

$$\frac{\partial \theta}{\partial x} = \cos(v, x)\delta_{\Gamma}; \quad \frac{\partial \theta}{\partial y} = \cos(v, y)\delta_{\Gamma}, \quad (5.5)$$

где $\delta_{\Gamma} = \delta(P)$ – дельта-функция, сосредоточенная на границе.

Дельта-функция, сосредоточенная на границе определяется следующим криволинейный интеграл первого рода:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \phi(x, y) \delta_{\Gamma} dx dy = \oint_{\Gamma} \phi(x, y) d\Gamma, \qquad (5.6)$$

где $\varphi(x, y)$ – произвольная бесконечно дифференцируемая функция. Тогда

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial \theta}{\partial x} \varphi(x, y) dx dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cos(\nu, x) \varphi(x, y) \delta_{\Gamma} dx dy =$$

$$= \oint_{\Gamma} \cos(\nu, x) \varphi(x, y) d\Gamma = -\oint_{\Gamma} \varphi(x, y) dy$$
(5.7)

– криволинейный интеграл второго рода.

Аналогично

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{\partial \theta}{\partial y} \varphi(x, y) dx dy = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cos(\nu, y) \varphi(x, y) \delta_{\Gamma} dx dy =$$

$$= \oint_{\Gamma} \cos(\nu, y) \varphi(x, y) d\Gamma = \oint_{\Gamma} \varphi(x, y) dx$$
(5.8)

– криволинейный интеграл второго рода.

На основании формул (5.7) и (5.8) можно получить некоторые необходимые для дальнейших вычислений формулы. В частности, обозначив неопределенные интегралы соответственно по переменным *x* и *y* как

$$\psi_1(x, y) = \int \phi(x, y) dx; \quad \psi_2(x, y) = \int \phi(x, y) dy,$$
(5.9)

будем иметь:

$$\int_{-\infty}^{\infty} \int \Theta(x, y) \phi(x, y) dx dy = \int_{-\infty}^{\infty} \int \Theta(x, y) (\frac{\partial}{\partial x} \psi_1(x, y)) dx dy =$$

$$= -\int_{-\infty}^{\infty} \int \frac{\partial \Theta}{\partial x} \psi_1(x, y) dx dy = \oint_{\Gamma} \psi_1(x, y) dy;$$
(5.10)

$$\int_{-\infty}^{\infty} \int \Theta(x, y) \phi(x, y) dx dy = \int_{-\infty}^{\infty} \int \Theta(x, y) (\frac{\partial}{\partial y} \psi_2(x, y)) dx dy =$$

$$= -\int_{-\infty}^{\infty} \int \frac{\partial \Theta}{\partial y} \psi_2(x, y) dx dy = -\oint_{\Gamma} \psi_2(x, y) dx.$$
(5.11)

Здесь осуществлено интегрирование по частям с учетом финитности подынтегральной функции, что приводит к отсутствию внеинтегральных членов.

Геометрические характеристики сечений.

Площадь

$$F = \iint_{\Omega} dx dy = \int_{-\infty}^{\infty} \theta(x, y) dx dy.$$
 (5.12)

Здесь $\psi_1(x, y) = \int dx = x; \quad \psi_2(x, y) = \int dy = y.$ Тогда

$$F = \oint_{\Gamma} x dy = -\oint_{\Gamma} y dx.$$
(5.13)

Статические моменты

$$S_x = \iint_{\Omega} y dx dy = \iint_{-\infty}^{\infty} \theta(x, y) y dx dy.$$
(5.14)

Здесь имеем: $\psi_1(x, y) = \int y dx = xy$; $\psi_2(x, y) = \int y dy = \frac{1}{2} y^2$. Следовательно, $S_x = \oint_{\Gamma} xy dy = -\frac{1}{2} \oint_{\Gamma} y^2 dx$. (5.15)

Аналогично

$$S_{y} = \iint_{\Omega} x dx dy = \iint_{-\infty}^{\infty} \Theta(x, y) x dx dy$$
 (5.16)

(5.17)

В данном случае $\psi_1(x, y) = \frac{1}{2}x^2$; $\psi_2(x, y) = xy$ и далее $S_y = \frac{1}{2}\oint_{\Gamma} x^2 dy = -\oint_{\Gamma} xy dx \cdot$

Моменты инерции

$$J_x = \iint_{\Omega} y^2 dx dy = \iint_{-\infty}^{\infty} \theta(x, y) y^2 dx dy.$$
 (5.18)

Имеем: $\psi_1(x, y) = xy^2$; $\psi_2(x, y) = \frac{1}{3}y^3$. Соответственно

$$J_{x} = \oint_{\Gamma} xy^{2} dy = -\frac{1}{3} \oint_{\Gamma} y^{3} dx.$$
 (5.19)

Аналогично

$$J_{y} = \iint_{\Omega} x^{2} dx dy = \iint_{-\infty}^{\infty} \theta(x, y) x^{2} dx dy.$$
 (5.20)

Здесь $\psi_1(x, y) = \frac{1}{3}x^3; \quad \psi_2(x, y) = yx^2.$ Тогда $J_y = \frac{1}{3} \oint_{\Gamma} x^3 dy = -\oint_{\Gamma} x^2 y dx.$ (5.21)

Также определяем

$$J_{xy} = \iint_{\Omega} yxdxdy = \iint_{-\infty}^{\infty} \theta(x, y) yxdxdy.$$
(5.22)

Здесь $\psi_1(x, y) = \frac{1}{2}x^2 y; \quad \psi_2(x, y) = \frac{1}{2}xy^2.$ В итоге $J_{xy} = \frac{1}{2}\oint_{\Gamma} x^2 y dy = -\frac{1}{2}\oint_{\Gamma} xy^2 dx.$ (5.23)

Итак, все интегральные геометрические характеристики сечений представлены в виде интегралов по границе, причем каждый раз есть либо выбор из двух формул, либо их линейная комбинация (например, полусумма).

Вычисление геометрических характеристик для сечения в виде произвольного многоугольника.

Пусть область Ω является многоугольником, имеющим *N* вершин (рис. 5.2). В этом случае все интегралы вычисляются по точным и достаточно удобным формулам.

Введем обозначения: i – номер узла, i = 1, 2, N; x_i, y_i – координата i-ой вершины; i-й участок границы – это часть границы соединяющая i-ую и (i+1)ую вершины с номерами i и (i+1). Тогда на i-ом участке можно ввести параметрическое представление координат в виде

$$x_i(t) = x_i + t\Delta x_i; \quad y_i(t) = y_i + t\Delta y_i; \quad \Delta x_i = x_{i+1} - x_i; \quad \Delta y_i = y_{i+1} - y_i.$$
 (5.24)

Рис. 5.2. К вычислению геометрических характеристик для многоугольника

Заметим, что $dx = \Delta x dt$, $dy = \Delta y dt$ и интегралы по границе могут быть представлены в виде:

$$\oint_{\Gamma} f(x, y) dx = \sum_{i=1}^{N} \int_{0}^{1} f(x_{i}(t), y_{i}(t)) \Delta x_{i} dt; \qquad (5.25)$$

$$\oint_{\Gamma} f(x, y) dy = \sum_{i=1}^{N} \int_{0}^{1} f(x_{i}(t), y_{i}(t)) \Delta y_{i} dt.$$
(5.26)

Перейдем к непосредственному вычислению интегралов, предварительно введя следующую систему обозначений:

$$\bar{x}_i = \frac{1}{2}(x_{i+1} + x_i); \quad \bar{y}_i = \frac{1}{2}(y_{i+1} + y_i); \quad f_i = f(x_i, y_i); \quad \bar{f}_i = f(\bar{x}_i, \bar{y}_i). \quad (5.27)$$

Площадь

$$F = \oint_{\Gamma} x dy = -\oint_{\Gamma} y dx \cdot$$

Подынтегральные функции f(x, y) = x (или f(x, y) = y) являются линейными. Тогда

$$F = \sum_{i=1}^{N} \overline{x}_i \Delta y_i \quad \text{или} \quad F = -\sum_{i=1}^{N} \overline{y}_i \Delta x_i.$$
(5.28)

При вычислении других интегралов обратим внимание, что подынтегральные функции – это параболы второй и третьей степени, для которых формула вычисления по методу Симпсона является точной, т.е.

$$\int_{0}^{1} \varphi(t) dt = \frac{1}{6} (\varphi_{i} + 4\overline{\varphi}_{i} + \varphi_{i+1}) \, dt$$

Введем следующие обозначения

$$\overline{\Delta}x_i = x_{i+1} - x_{i-1}; \quad \overline{\Delta}y_i = y_{i+1} - y_{i-1}.$$
 (5.29)

Следовательно,

$$\oint_{\Gamma} f(x, y) dy = \frac{1}{6} \sum_{i=1}^{N} \Delta y_i (f_i + 4\overline{f}_i + f_{i+1}) = \frac{1}{6} \sum_{i=1}^{N} (f_i \overline{\Delta} y_i + 4\overline{f}_i \Delta y_i); \quad (5.30)$$

$$\oint_{\Gamma} f(x, y) dx = \frac{1}{6} \sum_{i=1}^{N} \Delta x_i (f_i + 4\overline{f}_i + f_{i+1}) = \frac{1}{6} \sum_{i=1}^{N} (f_i \overline{\Delta} x_i + 4\overline{f}_i \Delta x_i).$$
(5.31)

Заметим, что из замкнутости контура следует

$$x_0 = x_N, \ x_{N+1} = x_1, \ y_0 = y_N, \ y_{N+1} = y_1, \ f_{N+1} = f_1.$$

Таким образом, для точного вычисления рассматриваемых интегралов достаточно вычислять значения подынтегральных функций только в вершинах и серединах отрезков.

Формулы (5.30)-(5.31) являются универсальными для вычисления геометрических характеристик сечения. В таблице 5.1 указаны соответствия подынтегральных функций f(x, y) (в двух вариантах) геометрическим характеристикам. Формулы, приведенные в таблице 5.1 удобны для вычислений и программирования.

Основные формулы для вычисления геометрических характеристик сечения

Геометрические характеристики	f(x, y)			
S _x	xy	$-\frac{1}{2}y^2$		
S_y	$\frac{1}{2}x^2$	-xy		
J_x	xy^2	$-\frac{1}{3}y^3$		
J_y	$\frac{1}{3}x^3$	$-x^2y$		
J_{xy}	$\frac{1}{2}x^2y$	$-\frac{1}{2}xy^2$		

Приведем далее перечень развернутых формул для вычисления геометрических характеристик многоугольника.

$$F = \iint \Theta(x, y) dx dy = \oint_{\Gamma} x dy = -\oint_{\Gamma} y dx = \sum_{i=1}^{N} \overline{x}_i \Delta y_i = -\sum_{i=1}^{N} \overline{y}_i \Delta x_i ; \qquad (5.32)$$

$$S_{x} = \int \int \Theta(x, y) y dx dy = \oint_{\Gamma} xy dy = -\frac{1}{2} \oint_{\Gamma} y^{2} dx =$$

$$= \frac{1}{6} \sum_{i=1}^{N} (x_{i} y_{i} \overline{\Delta} y_{i} + 4\overline{x}_{i} \overline{y}_{i} \Delta y_{i}) = -\frac{1}{12} \sum_{i=1}^{N} (y_{i}^{2} \overline{\Delta} x_{i} + 4\overline{y}_{i}^{2} \Delta x_{i}); \qquad (5.33)$$

$$S_{y} = \int \int \Theta(x, y) x dx dy = \frac{1}{2} \oint_{\Gamma} x^{2} dy = -\oint_{\Gamma} xy dx =$$

$$= \frac{1}{12} \sum_{i=1}^{N} (x_{i}^{2} \overline{\Delta} y_{i} + 4\overline{x}_{i}^{2} \Delta y_{i}) = -\frac{1}{6} \sum_{i=1}^{N} (x_{i} y_{i} \overline{\Delta} x_{i} + 4\overline{x}_{i} \overline{y}_{i} \Delta x_{i}); \qquad (5.34)$$

$$J_{x} = \int \int \theta(x, y) y^{2} dx dy = \oint_{\Gamma} xy^{2} dy = -\frac{1}{3} \oint_{\Gamma} y^{3} dx =$$

$$= \frac{1}{6} \sum_{i=1}^{N} (x_{i} y_{i}^{2} \overline{\Delta} y_{i} + 4 \overline{x}_{i} \overline{y}_{i}^{2} \Delta y_{i}) = -\frac{1}{18} \sum_{i=1}^{N} (y_{i}^{3} \overline{\Delta} x_{i} + 4 \overline{y}_{i}^{3} \Delta x_{i});$$

$$J_{y} = \int \int \theta(x, y) x^{2} dx dy = \frac{1}{3} \oint_{\Gamma} x^{3} dy = -\oint_{\Gamma} x^{2} y dx =$$

$$= \frac{1}{18} \sum_{i=1}^{N} (x_{i}^{3} \overline{\Delta} y_{i} + 4 \overline{x}_{i}^{3} \Delta y_{i}) = -\frac{1}{6} \sum_{i=1}^{N} (x_{i}^{2} y_{i} \overline{\Delta} x_{i} + 4 \overline{x}_{i}^{2} \overline{y}_{i} \Delta x_{i});$$

$$J_{xy} = \int \int \theta(x, y) xy dx dy = \frac{1}{2} \oint_{\Gamma} x^{2} y dx = -\frac{1}{2} \oint_{\Gamma} xy^{2} dy =$$
(5.36)

$$= \frac{1}{12} \sum_{i=1}^{N} (x_i^2 y_i \overline{\Delta} y_i + 4\overline{x}_i^2 \overline{y}_i \Delta y_i) = -\frac{1}{12} \sum_{i=1}^{N} (x_i y_i^2 \overline{\Delta} x_i + 4\overline{x}_i \overline{y}_i^2 \Delta x_i).$$
(5.37)

Заметим, что последние два выражения в каждой формуле равносильны между собой.

Вычисление геометрических характеристик для произвольного сечения.

Если сечение представляет собой сумму или разность многоугольников, то соответствующие интегралы вычисляются по каждому из них и результат суммируется с учетом знака. Окончательное вычисление геометрических характеристик относительно центра тяжести или главных осей пересчитываются по известным формулам. В случае криволинейной границы самым эффективным способом вычислений является ее замена ломаной с заданной точностью.

<u>Пример выполнения расчета.</u> Определить геометрические характеристики сечения, приведенного на рис. 1 /заштрихованная область/.

<u>Варианты задания</u>. Координаты точек сечения берутся из таблицы 5.2, где $H = 1 + \frac{g+s}{100}; g$ – номер группы, *s* – номер студента по журналу.

Рис. 5.3. Рассматриваемый многоугольник.

Таблица 5.2

Координаты	1 контур			2 контур					
точки	1	2	3	4	5	6	7	8	
x	0	6.5	5.2	1.3	2.6	5.2	3.9	2.6	
У	0	1.3	6.5	5.2	1.3	2.6	5.2	3.9	

Координаты вершин многоугольника

Пример выполнения задания.

Текст М-файла.

```
H=input(' Введите значение параметра H=');
M=input(' Введите количество контуров =');
for k=1:M
    fprintf('\n Порядковый номер контура =%2d \n',k);
    fprintf('\n Введите знак контура');
    fprintf('\n (1 - внешний, -1 - внутренний)');
    znak(k)=input(' Знак контура =');
    N(k)=input(' Введите количество вершин контура =');
end
NMAX=max(N);
x=zeros(M,NMAX+2); y=zeros(M,NMAX+2);
for k=1:M
```

```
fprintf('\n Paccмaтривается контур номер %2d \n',k);
    x t=input(' Введите абсциссы точек контура =');
    y t=input(' Введите ординаты точек контура =');
    x(k,2:N(k)+1) = x t(1:N(k));
    y(k, 2:N(k)+1) = y t(1:N(k));
    x(k, 1) = x(k, N(k) + 1);
    x(k, N(k) + 2) = x(k, 2);
    y(k, 1) = y(k, N(k) + 1);
    y(k, N(k) + 2) = y(k, 2);
    xx(k, 1:N(k)+1) = x(k, 2:N(k)+2);
    yy(k, 1:N(k)+1) = y(k, 2:N(k)+2);
end
x=x*H; y=y*H;
xx=xx*H; yy=yy*H;
hold on
for k=1:M
    plot(xx(k, 1:N(k)+1), yy(k, 1:N(k)+1), '-k');
end
F=0; Sx=0; Sy=0; Jx=0; Jy=0; Jxy=0;
for k=1:M
    for i=2:N+1
         x1(k,i) = (x(k,i+1)+x(k,i))/2;
         y1(k,i) = (y(k,i+1)+y(k,i))/2;
        dx(k,i) = x(k,i+1) - x(k,i);
         dy(k,i) = y(k,i+1) - y(k,i);
        dox(k,i) = x(k,i+1) - x(k,i-1);
        doy(k,i) = y(k,i+1) - y(k,i-1);
    end
    F=F+znak(k) * sum(x1(k, 2:N(k)+1).*dy(k, 2:N(k)+1));
    Sx=Sx+znak(k) * sum(x(k, 2:N(k)+1).*y(k, 2:N(k)+1).*...
           doy(k, 2:N(k)+1)+4*x1(k, 2:N(k)+1).*...
           y1(k, 2:N(k)+1).*dy(k, 2:N(k)+1))/6;
    Sy=Sy+znak(k) * sum(x(k, 2:N(k)+1).^{2.*...}
           doy(k, 2:N(k)+1)+4*x1(k, 2:N(k)+1).^{2}.*..
           dy(k,2:N(k)+1))/12;
    Jx=Jx+znak(k) * sum(x(k, 2:N(k)+1).*...
```

```
y(k, 2:N(k)+1) .^{2}.*doy(k, 2:N(k)+1) ...
         +4*x1(k,2:N(k)+1).*y1(k,2:N(k)+1).^2.*...
         dy(k, 2:N(k)+1))/6;
    Jy=Jy+znak(k) * sum(x(k, 2:N(k)+1).^3.*...
          doy(k, 2:N(k)+1)+4*x1(k, 2:N(k)+1).^{3}.*...
          dy(k,2:N(k)+1))/18;
    Jxy=Jxy+znak(k) * sum(x(k, 2:N(k)+1).^{2}.*...
            y(k,2:N(k)+1).*doy(k,2:N(k)+1)+...
            4*x1(k,2:N(k)+1).^2.*y1(k,2:N(k)+1).*...
            dy(k, 2:N(k)+1))/12;
end
fprintf('\n Общая площадь сечения, F=%12.4g \n',F);
fprintf('\n Статические моменты инерции сечения:');
fprintf('\n - относительно оси X, Sx=%12.4g',Sx);
fprintf('\n - относительно оси Y, Sy=%12.4g \n',Sy);
fprintf('\n Осевые моменты инерции сечения:');
```

```
fprintf('\n – относительно оси X, Jx=%12.4g',Jx);
fprintf('\n – относительно оси Y, Jy=%12.4g \n',Jy);
fprintf('\n Центробежный момент инерции сечения, ');
fprintf('\n Jxy=%12.4g \n',Jxy)
```

Результаты счета

Общая площадь сечения, F= 35.7013 Статические моменты инерции сечения: - относительно оси X, Sx= 139.9775 - относительно оси Y, Sy= 148.8266 Осевые моменты инерции сечения: - относительно оси X, Jx= 718.5228 - относительно оси Y, Jy= 796.0172 Центробежный момент инерции сечения Jxy= 625.7334

Рис. 5.4. Визуализация многоугольника в системе МАТLAВ

Пояснения к тексту программы. Порядок ввода исходных данных для рассматриваемого примера показан ниже:

```
Введите значение параметра H=1.3
введите количество контуров M=2
порядковый номер рассматриваемого контура:
k= 1
введите знак контура
/1 - внешний, -1 -внутренний/ znak=1
введите количество вершин контура N=4
порядковый номер рассматриваемого контура:
k= 2
введите знак контура
/1 - внешний, -1 -внутренний/ znak=-1
введите количество вершин контура N=4
```

рассматриваемый контур k= 1 введите координаты абсцисс точек контура x=[0 6.5 5.2 1.3] введите координаты ординат точек контура y=[0 1.3 6.5 5.2] рассматриваемый контур k= 2 введите координаты абсцисс точек контура x=[2.6 5.2 3.9 2.6] введите координаты ординат точек контура y=[1.3 2.6 5.2 3.9]