ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №6

Расчет балочных конструкций по первой и второй группам предельных состояний. Определить прогиб стальной балки в характерных точках и проверить условие ее жесткости

Методические указания к выполнению задания.

Осуществить следующие этапы

- 1. Построение эпюр поперечных сил и изгибающих моментов для простых стальных балок.
- 2. Подбор сечения из условия предельного состояния первой группы (прочности в точках опасного сечения).
 - 3. Определение прогиба для точки заданного сечения.
- 4. Проверка предельного состояния второй группы (условия жесткости по эстетическим требованиям.

Краткие теоретические сведения.

Цель работы — приобретение навыков расчета изгибаемых элементов металлических конструкций по предельным состояниям первой и второй группы.

В рамках данных методических указаний расчет металлических балок будет выполняться в упругой стадии работы, при этом изгибающий момент действует только в одной из главных плоскостей.

Согласно СП 16.13330.207 расчет на прочность (первая группа предельных состояний) изгибаемых элементов сплошного сечения выполняется по формулам:

при действии момента в плоскости элемента

$$\frac{M}{W_{x}R_{y}\gamma_{c}} \le 1,\tag{1}$$

при действии в сечении поперечной силы

$$\frac{Q \cdot S_x}{I_x \cdot t_w R_s \gamma_c} \le 1,\tag{2}$$

где, M — действующий изгибающий момент от расчетных нагрузок; W_x — момент сопротивления в плоскости элемента (принимается по сортаменту); R_y — расчетное сопротивление стали принятое по пределу текучести; R_s — расчетное сопротивление стали сдвигу (R_s =0,58 R_y),

 S_x — статический момент балки (принимается по сортаменту); t_w — толщина стенки балки (принимается по сортаменту); I_x — момент инерции сечения (принимается по сортаменту); γ_c — коэффициент условий работы (в рамках данных методических указаний $\gamma_c = 1$).

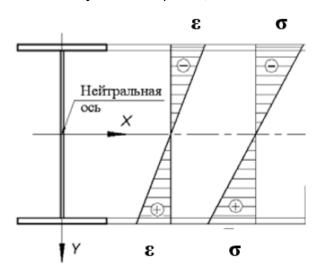


Рис.1. Распределение деформаций и нормальных напряжений в сечении изгибаемой стальной балки

Расчет по второй группе предельных состояний (проверка жесткости) изгибаемых металлических балок при действии равномерно распределенной нагрузки и шарнирном закреплении обоих концов балок выполняется по формуле:

$$f = \frac{5}{384} \frac{q_n l_0^4}{EI} \le f_{ult},\tag{3}$$

где q_n — нормативная равномерно распределенная нагрузка; l_0 — расчетная длина элемента; E — модуль упругости стали, E = 206000 МПа; I — момент инерции сечения (принимается по сортаменту); f_{ult} — допустимые перемещения конструкции, которые нормируются приложением Д (СП 20.13330.2016), согласно которому:

- при пролете
$$l \le 1$$
 м $\to f_u = 1/120$;
- при пролете $l = 3$ м $\to f_u = 1/150$;
- при пролете $l = 6$ м $\to f_u = 1/200$;
- при пролете $l = 12$ м $\to f_u = 1/250$.

При промежуточных значениях $\ll l$ » предельные прогибы следует определять линейной интерполяцией.

Пример. Подобрать сечение однопролетной шарнирно опертой балки из прокатного двутавра типа Б по ГОСТ Р 57837-2017 и проверить ее прочность и жесткость при следующих исходных данных. Расчетная длина балки $l_0 = 6,0$ м, нагрузка равномерно распределенная: временная (от оборудования) $q_v = 8$ кН/м, постоянная $q_p = 2$ кН/м. Материал балки - сталь марки С245 ($R_y = 240$ МПа). Коэффициенты надежности по нагрузке: $\gamma_{fb} = 1,05$ для собственного веса; $\gamma_{fp} = 1,1$ для постоянной; $\gamma_{fv} = 1,2$ для временной.

Решение:

1. Найдем расчетную нагрузку на балку:

$$q = q_{\nu} \gamma_{f\nu} + q_{p} \gamma_{fp} = 8 \cdot 1, 2 + 2 \cdot 1, 1 = 11, 8\kappa H / M.$$

2. Найдем действующий изгибающий момент:

$$M = \frac{ql^2}{8} = \frac{11.8 \cdot 6^2}{8} = 53.1 \kappa Hm.$$

3. Определим требуемый момент сопротивления сечения, воспользовавшись формулой (2):

$$W = \frac{M}{R_{\nu} \gamma_{c}} = \frac{53.1 \cdot 10^{2}}{24 \cdot 1} = 221,25 c M^{3}.$$

По таблице 1 (ГОСТ Р 57837-2017) подбираем двутавр № 20Б3 с характеристиками сечения: W_x =274,3см³; I_x =2852,62 см⁴; S_x =158,46 см³, t_w =8 мм; собственный вес погонного метра профиля q_p = 31кг/м = 0,31 кН/м.

4. Найдем нормативную нагрузку на балку:

$$q_n = q_v + q_p + q_b = 8 + 2 + 0.31 = 10.31 \kappa H / M.$$

5. Найдем расчетную нагрузку на балку:

$$q = q_{\nu} \gamma_{f\nu} + q_{\rho} \gamma_{f\rho} + q_{b} \gamma_{fb} = 8 \cdot 1, 2 + 2 \cdot 1, 1 + 0, 31 \cdot 1, 05 = 12, 12 \kappa H / M.$$

6. Найдем действующий изгибающий момент:

$$M_{\text{max}} = \frac{ql^2}{8} = \frac{12,12 \cdot 6^2}{8} = 54,5\kappa H M.$$

7. Найдем действующую поперечную силу:

$$Q_{\text{max}} = \frac{ql}{2} = \frac{12,12 \cdot 6}{2} = 36,4\kappa H.$$

8. Проверим прочность сечения:

- на действие изгибающего момента:

$$\frac{M}{W_x R_y \gamma_c} = \frac{5450}{274, 3 \cdot 24 \cdot 1} = 0,82 \le 1,$$

- на действие поперечной силы:

$$\frac{Q \cdot S_x}{I_x \cdot t_w R_s \gamma_c} = \frac{36,4 \cdot 158,46}{2852,62 \cdot 0,8 \cdot 13,92} = 0,18 \le 1,$$

где R_s =0,58 R_y =0,58·24=13,92 кH/см².

Вывод: прочность балки обеспечена.

9. Определим прогиб балки от нормативных нагрузок:

$$f = \frac{5 \cdot q_n \cdot l_0^4}{384 \cdot EI} = \frac{5 \cdot 10,31 \cdot 10^{-2} \cdot 600^4}{384 \cdot 20600 \cdot 2852,62} = 2,96 cM < f_{ult} = 3 cM,$$

где $f_{ult} = l_0/200 = 600/200$ =3см - предельно допустимый прогиб согласно условию ().

Вывод: жесткость балки обеспечена.

Задания для самостоятельного выполнения

Подобрать сечение однопролетной шарнирно опертой балки из прокатного двутавра типа Б по ГОСТ Р 57837-2017 и проверить ее прочность и жесткость при исходных данных, указанных в табл. 1.

 Таблица 1

 Исходные данные для расчета металлических балок

Ном	Расчетна	Временн	Коэффициент	Постоян	Коэффициент	Расчетное
ep	я длина	ая	надежности по	ная	надежности по	сопротивле
вари	элемент	нагрузка	временной	нагрузка	постоянной	ние стали,
анта	а, м	q_{v} , к H /м	нагрузке γ_{fv}	q_p , к H /м	нагрузке γ_{fp}	МПа
1	4,8	18,4	1,2	6	1,3	240
2	5	29,5	1,2	3	1,2	250
3	5,2	19,4	1,2	2,3	1,1	230
4	5,4	22,4	1,2	8,2	1,2	240
5	5,6	23,8	1,2	7,6	1,1	250
6	5,8	22,1	1,2	8,2	1,3	230
7	6	18,6	1,2	4,4	1,1	240
8	6,2	25,5	1,2	7,4	1,1	250

Ном ер	Расчетна я длина	Временн	Коэффициент надежности по	Постоян ная	Коэффициент надежности по	Расчетное сопротивле
вари анта	элемент <i>а</i> , м	нагрузка q_{v} , кН/м	временной нагрузке γ_{fv}	нагрузка q_p , кН/м	постоянной нагрузке γ_{fp}	ние стали, МПа
9	6,4	18,6	1,2	2,6	1,1	230
10	6,6	29,5	1,2	5,3	1,2	240
11	6,8	29,4	1,2	8,6	1,2	250
12	7	26,9	1,2	2,8	1,2	230
13	7,2	22,5	1,2	9,8	1,1	240
14	4,8	26,9	1,2	7	1,3	250
15	5	27,5	1,2	6	1,2	230
16	5,2	23	1,2	8	1,2	240
17	5,4	23,2	1,2	7,5	1,1	250
18	5,6	24,9	1,2	8,6	1,2	230
19	5,8	14,5	1,2	4,3	1,3	240
20	6	21,5	1,2	7,3	1,1	250
21	6,2	20,3	1,2	5,7	1,3	230
22	6,4	18,2	1,2	3,3	1,2	240
23	6,6	19,3	1,2	8,7	1,3	250
24	6,8	19,3	1,2	7,5	1,1	230
25	7	19,5	1,2	6	1,1	240
26	7,2	24,1	1,2	3,8	1,3	250
27	4,8	20,8	1,2	2,4	1,3	230
28	5	21,1	1,2	6,3	1,1	240
29	5,2	28,4	1,2	2,2	1,1	250
30	5,4	26,1	1,2	3,3	1,1	230

Коэффициенты надежности по нагрузке для собственного веса принять γ_{fb}