Практическое занятие 8. Гидравлический расчет системы тепло-холодоснабжения СКВ, подбор насосов. Расчет и подбор аккумуляторов теплоты и холода

Пример гидравлического расчета системы тепло-холодоснабжения фэнкойлов

Холодопроизводительность системы кондиционирования воздуха здания 96,8кВт, с учетом 10% запаса — 106,51 кВт. Источники холода - два чиллера WSAT 222, холодопроизводительностью каждый 58,6 кВт, потребляемой мощностью 18,6 кВт. Схема системы тепло-холодоснабжения фэнкойлов представлена на рис. 1. На схему системы тепло-холодоснабжения фэнкойлов нанесены значения холодопроизводительности каждого фэнкойла. Путем последовательного суммирования определены нагрузки по холоду участков трубопроводов, а также нанесены длины участков.

В качестве расчетного кольца циркуляции выбрано кольцо через наиболее удаленный и нагруженный фэнкойл. Кольцо состоит из 29 расчетных участков, длина каждого из них и суммарная длина $\sum l = 149$, 8 м приведены в таблице 1.

Общий расход воды в системе определен по формуле, кг/ч

$$G = \frac{1.1Q_{_{X}}}{c_{_{X}}(t_{_{2HCK}}-t_{_{2HCH}})} = \frac{3.6 \cdot 1.1 \cdot 96.8}{4.187(12-6)} = 15263 \, \text{ke} \, / \, \text{vac} = 2.1 \, \pi / \, c.$$

Для нахождения расчетных расходов воды на участках системы определены весовые коэффициенты, расчетные расходы воды для каждого участка приведены в таблице 1.

Расчетное циркуляционное давление в кольце

$$\Delta P_P = P_H = 125 \kappa \Pi a$$
,

где P_{H} - давление, развиваемой насосом.

Давление, развиваемое насосом, определено по характеристике насоса 04 гидромодуля GP2, которой комплектуется чиллер WSAT 222. При расходе воды в системе $G = 2,1\pi/c$ давление, развиваемое насосом, составляет 125 кПа. Диаметры трубопроводов главного кольца циркуляции назначены, исходя из среднего значения удельной потери давления на трение R_{cp} , определенного по формуле

$$R_{cp} = \frac{\Delta P p - \Delta P_{\phi} - \Delta P_{\delta \kappa n} - \Delta P_{ucn}}{\sum_{l} l} (1 - k),$$

где ΔP_{ϕ} - потери давления в фэнкойле (вместе с регулирующим клапаном), через который проходит главное кольцо циркуляции системы, составляют 21,5 кПа;

 $\Delta P_{\delta \pi \kappa}$ - потери давления на балансировочном и запорном клапанах ответвления предварительно приняты 20+10=30 кПа;

 ΔP_{ucn} - потери давления в испарителе чиллера при расходе воды 2,1 л/с по графику из каталога для чиллера WSAT 222 составляют 25 кПа.

 $\sum l$ - сумма длин участков кольца м;

К- доля потерь на местные сопротивления κ =0,35.

$$Rcp = \frac{(125 - 21, 5 - 30 - 25)10^3}{150} (1 - 0, 35) = 210 \, \Pi a \, / \, M$$

По величине R_{cp} и расходам воды найдены действительные значения R и скорости v по таблице гидравлического расчета Шевелева Ф.А. и Шевелева А.Ф. для стальных водогазопроводных новых труб при температуре холодной воды $+10^{\circ}$ С. Значения коэффициентов местных сопротивлений для каждого участка, выявляемых из аксонометрической схемы (рис. 1), найдены в соответствии с таблицей II.10-II.20 Справочника проектировщика «Отопление» для стальных трубопроводов.

Коэффициенты местного сопротивления на участках:

№ 1и 1' - отвод 90 0 ξ =0,5, №2 и 2'- тройник на проход ξ =1, отвод 90 0 - 7шт ξ =0,5x7=3,5,

№3 - тройник на растекание потоков ξ =6,3, №4 и 4'- тройник на проход ξ =1, 2 отвода 90° ξ =0,5х2=1, №5 и 5' - тройник на ответвление ξ =1,5, с № 6 по №11 и 11' по 6' - тройник на проход ξ =1, №12 - тройник на растекание ξ =6,3, №13 и 13' - тройник на проход ξ =1, №14 и 14', 2 отвода 90° ξ =1,5х2=3, тройник на проход ξ =1, №12' - тройник на слияние потоков ξ =5, №3' - тройник на слияние потоков ξ =5.

Затем определены потери давления на каждом участке и общие потери давления в главном кольце циркуляции. Результаты гидравлического расчета сведены в таблице 1.

Потери давления в фанкойле равняются сумме потерь давления в теплообменнике и трехходовом регулирующем клапане.

$$\Delta p_{\phi} = 8,5 + 13 = 21,5 \text{ к}\Pi a$$

Подбор автоматических балансировочних клапанов фирмы "Данфосс".

Расход воды на участке 5(5') G=1907,3 л/ч и $\Delta p=41639,4$ Па. По номограмме подбираем ASV-P 32 $k_v=4,8 \text{м}^3/\text{ч},~\Delta p_v=42~\text{к}\Pi a,~X_p=0,017~\text{bar}=1,7~\text{к}\Pi a.$ Регулирующий вентиль MV-FN-32 $\Delta p_v=4,8~\text{к}\Pi a,~k_v=8,8~\text{м}^3/\text{ч}.$

Суммарные потери давления $\Delta p_{\Sigma} = \Delta p_{\Sigma y q} + \Delta p_{u c n} + \Delta p_{b k n} + \Delta p_{p B}$, кПа, где $\Delta p_{\Sigma y q}$ — потери давления на трубопроводах главного циркуляционного кольца;

 $\Delta p_{\text{вип}}$ – потери давления в испарителе;

 $\Delta p_{\text{pn}}\,$ – потери давления в регуляторе перепада давления;

 $\Delta p_{\text{pB}}\,$ – потери давления в регулирующем вентиле.

$$\Delta p_{\Sigma} = 56,676 + 17,6 + 42,0 + 4,8 = 121,08$$
 кПа

Согласно подобранного насоса, давление, развиваемое насосом 129 кПа. Невязка (129-121,08)/129=6,5%<10%. Расчет главного циркуляционного кольца завершен.

Расчет второстепенных колец проводят исходя из расчета основного кольца. В каждом новом кольце рассчитывают необщие участки, параллельно соединенные с участками основного кольца. При этом стремятся к получению равенства потерь давления. Невязка в расчетных потерях давления на параллельно соединенных участках при тупиковом движении воды в магистралях не должна превышать 15%.

На четвертом этапе выполняют расчет ответвлений от главного кольца для всех колец циркуляции. Гидравлический расчет ответвлений от главного кольца сводится к расчету потерь давления на нескольких необщих участках, соединенных параллельно с участками главного кольца, при этом потери давления в основном кольце изменению не подлежат.

Расчетное циркуляционное давление для необщих участков второстепенного кольца определяют по формуле

$$\Delta P_{PZOT} = \sum (Rl + Z)_{CCH}$$

где $\sum (Rl+Z)_{_{O\!C\!H}}$ — сумма потерь давления необщих участков основного кольца, которые соединены параллельно с участками ответвления, Па. Полученные в результате расчета двух групп нескольких независимых участков ответвлений потери давления в них $\sum (Rl+Z)_{_{\!{\!D\!O\!H}}}$ сопоставляют с величиной $\Delta P_{_{\!{\!P\!D\!O\!H}}}$ и рассчитывают % неувязки :

$$a = \frac{\Delta P_{P,DOT} - \sum (Rl + Z)_{DOT}}{\Delta P_{P,DOT}} 100\%$$

Потери давления на параллельно соединенных участках не должны быть отличаться более чем на 15 процентов при тупиковом движении в магистралях двухтрубных систем тепло-холодоснабжения фэнкойлов, более чем на 5% - при попутном движении. Для увязки потерь давления используют балансировочную арматуру.

№ уч	Q _х , кВт	G, кг/час	d, мм	R, Па/м	Длина, l, м	υ, м/c	$\Sigma \xi$	Ζ, Па	Rl+Z, Па
1	53,26	7632,2	65	60	2,3	0,559	0,5	75	213
2	106,51	15262, 9	100	33	41,5	0,524	4,5	595	1964
3	61,96	8878,9	65	80	2,3	0,649	6,3	1342	1526
4	26,94	3860,5	40	260	1,0	0,83	2	706	966
5	13,31	1907,3	32	130	5,3	0,532	1,5	206	895
6	10,33	1480,3	32	70	4,3	0,392	1	75,4	376
7	9,34	1338,4	25	280	0,7	0,653	1	206	402
8	8,35	1196,5	25	220	2,4	0,576	1	161	689
9	7,36	1054,6	20	650	0,7	0,85	1	353	808
10	6,09	872,7	20	450	2,2	0,704	1	239	1229
11	5,1	730,8	20	320	8,2	0,591	1	170	2794
12	3,06	438,5	15	550	1,1	0,634	6,3	261	1866
13	2,04	292,3	15	255	3,9	0,431	1	90,4	1085
14	1,02	146,2	15	68	7,5	0,21	4	86,2	596
						-	койл	1	21500
14'	1,02	146,2	15	68	7,2	0,21	4	86,2	576
13'	2,04	292,3	15	255	4,0	0,431	1	90,4	1110
12'	3,06	438,5	15	550	1,0	0,649	5	1001	1551
11'	5,1	730,8	20	320	5,1	0,591	1	170	1802
10'	6,09	872,7	20	450	2,2	0,704	1	239	1229
9'	7,36	1054,6	20	650	0,7	0,85	1	353	808
8'	8,35	1196,5	25	220	2,4	0,576	1	161	689
7'	9,34	1338,4	25	280	0,7	0,653	1	206	402
6'	10,33	1480,3	32	70	4,3	0,392	1	75,4	376
5'	13,31	1907,3	32	130	5,0	0,532	1,5	206	856
4'	26,94	3860,5	40	260	1,0	0,83	2	706	966
3'	61,96	8878,9	65	80	2,3	0,649	5	1032	1216
2'	106,51	15262,9	100	33	41,5	0,524	4,5	595	1951
1'	53,26	7632,2	65	60	2,3	0,559	0,5	75	213
4.5	10.60	10500	22	1.40	2.0	0.550		Σ 566	76 Па
15	13,63	1953,2	32	140	2,8	0,553			392
16	11,39	1632,1	25	450	0,9	0,831			405
17	7,37	1056,1	25	180	12,1	0,52			2178
18	5,7	816,8	25	110	3,0	0,403			330
19	3,69	528,8	20	165	8,3	0,42			1369,5
20	2,7	386,9	15	410	2,6	0,551			1066
202	2.7	296.0	1.5	410	фэнкойл				19800
20'	2,7	386,9	15	410	2,4	0,551			984
19'	3,69	528,8	20	165	8,4	0,42			1386
18'	5,7	816,8	25	110	2,9	0,403			330
17'	7,37	1056,1	25	180	12,5	0,52			2250
16'	11,39	1632,1	25	450	0,9	0,831			405
15'	13,63	1953,2	32	140	2,7	0,553			378

				Σ 31273,5x1,3=40655,5
				Па

Ответвление 15-15'.

$$R_{15-15} = \frac{88439 \cdot 0.5 - 19800}{1.3 \cdot 59.5} = 315.7 \frac{\Pi a}{M}$$

В помещении №123 установлен фэнкойл 4-UKW30-3SL, $Q_x = 2.7$ квт.

$$G_{\phi} = \frac{2.7 \cdot 10^3 \cdot 3.6}{4.187 \cdot 6} = 386.9 \frac{\pi}{200}$$

Перепад давления в теплообменнике определяем по данным производителя

$$\Delta p = 5.8 \text{ kHa}$$

Подбор трехходового клапана при G=386,9 л/ч по номограмме определяем $k_{vs}\!\!=\!\!1,\!0,~\Delta p=14$ кПа. Суммарные потери в фэнкойле $\Delta p_{\Sigma}=5,\!8\!\!+\!14\!\!=\!\!19,\!8$ кПа.

Подбор автоматических балансировочних клапанов фирмы "Данфосс".

Расход хладоносителя на участке 15(15') G=1953,2 л/ч и $\Delta p=40655,5$ Па. По номограмме подбираем регулятор перепада давления ASV-P 32 $k_v=3,3$ м³/ч, $\Delta p_v=41$ кПа, $X_p=0,0172$ bar = 1,7 кПа. Запорный клапан MV-FN-32 $\Delta p_v=4,7$ кПа, $k_v=8,8$ м³/ч.

Суммарные потери давления $\Delta p_{\Sigma} = 40655,5+41000+4700=86355,5<88439$ Па.

Невязка (88439-86355,5)/88439=2,3%<10%.

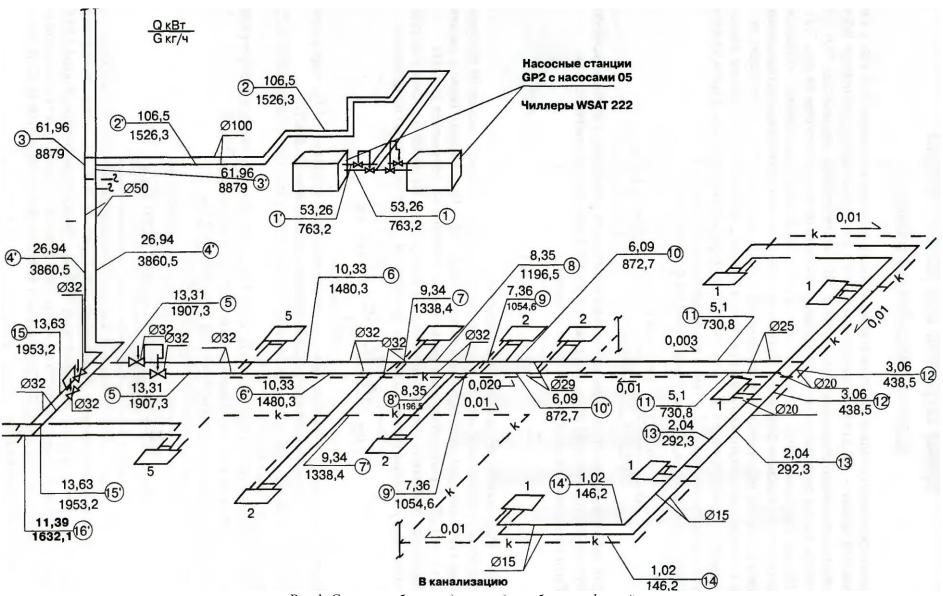


Рис. 1. Схема трубопроводов холодоснабжения фэнкойлов